Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Southward movement of the Pacific intertropical convergence zone AD 1400–1850

Abstract

Tropical rainfall patterns control the subsistence lifestyle of more than one billion people. Seasonal changes in these rainfall patterns are associated with changes in the position of the intertropical convergence zone, which is characterized by deep convection causing heavy rainfall near 10 N in boreal summer and 3 N in boreal winter. Dynamic controls on the position of the intertropical convergence zone are debated, but palaeoclimatic evidence from continental Asia, Africa and the Americas suggests that it has shifted substantially during the past millennium, reaching its southernmost position some time during the Little Ice Age (AD 1400–1850). However, without records from the meteorological core of the intertropical convergence zone in the Pacific Ocean, quantitative constraints on its position are lacking. Here we report microbiological, molecular and hydrogen isotopic evidence from lake sediments in the Northern Line Islands, Galápagos and Palau indicating that the Pacific intertropical convergence zone was south of its modern position for most of the past millennium, by as much as 500 km during the Little Ice Age. A colder Northern Hemisphere at that time, possibly resulting from lower solar irradiance, may have driven the intertropical convergence zone south. We conclude that small changes in Earth’s radiation budget may profoundly affect tropical rainfall.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of mean annual precipitation in the tropical Pacific with our sampling locations shown.
Figure 2: Sediment features from Washington Lake and Christmas Island lake F6.
Figure 3: Age–depth models for Washington Lake sediment.
Figure 4: Tropical Pacific precipitation proxy records during the past 1,200 years and selected records from the literature.

References

  1. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    Article  Google Scholar 

  2. Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103, 14291–14324 (1998).

    Article  Google Scholar 

  3. Newton, A., Thunell, R. & Stott, L. Climate and hydrographic variability in the Indo-Pacific Warm Pool during the last millennium. Geophys. Res. Lett. 33, L19710 (2006).

    Article  Google Scholar 

  4. Langton, S. J. et al. 3,500 yr record of centennial-scale climate variability from the Western Pacific Warm Pool. Geology 36, 795–798 (2008).

    Article  Google Scholar 

  5. Verschuren, D., Laird, K. R. & Cumming, B. F. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature 403, 410–414 (2000).

    Article  Google Scholar 

  6. Anderson, D. M., Overpeck, J. T. & Gupta, A. K. Increase in the Asian southwest monsoon during the past four centuries. Science 297, 596–599 (2002).

    Article  Google Scholar 

  7. Alin, S. R. & Cohen, A. S. Lake-level history of Lake Tanganyika, East Africa, for the past 2,500 years based on ostracode-inferred water-depth reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 31–49 (2003).

    Article  Google Scholar 

  8. Brown, E. T. & Johnson, T. C. Coherence between tropical East African and South American records of the Little Ice Age. Geochem. Geophys. Geosys. 6, Q12005 (2005).

    Google Scholar 

  9. Haug, G. H. et al. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–1308 (2001).

    Article  Google Scholar 

  10. Sifeddine, A. et al. Laminated sediments from the central Peruvian continental slope: A 500 year record of upwelling system productivity, terrestrial runoff and redox conditions. Prog. Oceanogr. 79, 190–197 (2008).

    Article  Google Scholar 

  11. Linsley, B. K., Dunbar, R. B., Wellington, G. M. & Mucciarone, D. A. A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707. J. Geophys. Res. 99, 9977–9994 (1994).

    Article  Google Scholar 

  12. Hodell, D. A. et al. Climate change on the Yucatan Peninsula during the Little Ice Age. Quat. Res. 63, 109–121 (2005).

    Article  Google Scholar 

  13. Lund, D. C., Lynch-Stieglitz, J. & Curry, W. B. Gulf Stream density structure and transport during the past millennium. Nature 444, 601–604 (2006).

    Article  Google Scholar 

  14. Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940–942 (2008).

    Article  Google Scholar 

  15. Chiang, J. C. H., Zebiak, S. E. & Cane, M. A. Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci. 58, 1371–1394 (2001).

    Article  Google Scholar 

  16. Wester, L., Juvik, J. & Holthu, P. Vegetation history of Washington Island (Teraina), Northern Line Islands. Atoll Res. Bull. 358, 1–50 (1992).

    Article  Google Scholar 

  17. Saenger, C., Miller, M., Smittenberg, R. & Sachs, J. A physico-chemical survey of inland lakes and saline ponds: Christmas Island (Kiritimati) and Washington (Teraina) Islands, Republic of Kiribati. Sal. Syst. 2, 8 (2006).

    Article  Google Scholar 

  18. Bauld, J. Occurrence of benthic microbial mats in saline lakes. Hydrobiology 81–82, 87–111 (1981).

    Article  Google Scholar 

  19. Fenchel, T. Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aquat. Microb. Ecol. 14, 235–240 (1998).

    Article  Google Scholar 

  20. Sachse, D. & Sachs, J. P. Inverse relationship between D/H fractionation in cyanobacterial lipids and salinity in Christmas Island saline ponds. Geochim. Cosmochim. Acta 72, 793–806 (2008).

    Article  Google Scholar 

  21. Gonfiantini, R. Handbook of Environmental Isotope Geochemistry (Elsevier, 1986).

    Google Scholar 

  22. Garcia-Pichel, F., Nubel, U. & Muyzer, G.. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch. Microbiol. 169, 469–482 (1998).

    Article  Google Scholar 

  23. Hamner, W. M. & Hamner, P. P. Stratified marine lakes of Palau (Western Caroline Islands). Phys. Geogr. 19, 175–220 (1998).

    Article  Google Scholar 

  24. Hamner, W. M., Gilmer, R. W. & Hamner, P. P. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnol. Oceanogr. 27, 896–909 (1982).

    Article  Google Scholar 

  25. Sessions, A. L., Burgoyne, T. W., Schimmelmann, A. & Hayes, J. M. Fractionation of hydrogen isotopes in lipid biosynthesis. Org. Geochem. 30, 1193–1200 (1999).

    Article  Google Scholar 

  26. Zhang, Z. & Sachs, J. P. Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Org. Geochem. 38, 582–608 (2007).

    Article  Google Scholar 

  27. Volkman, J. K. et al. Microalgal biomarkers: A review of recent research developments. Org. Geochem. 29, 1163–1179 (1998).

    Article  Google Scholar 

  28. Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225–262 (1996).

    Article  Google Scholar 

  29. Colinvaux, P. A. Climate and the Galápagos Islands. Nature 240, 17–20 (1972).

    Article  Google Scholar 

  30. Zhang, Z., Metzger, P. & Sachs, J. P. Biomarker evidence for the co-occurrence of three races (A, B and L) of Botryococcus braunii in El Junco Lake, Galápagos. Org. Geochem. 38, 1459–1478 (2007).

    Article  Google Scholar 

  31. Metzger, P., Berkaloff, C., Casadevall, E. & Coute, A. Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24, 2305–2312 (1985).

    Article  Google Scholar 

  32. Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article  Google Scholar 

  33. Chiang, J. C. H., Cheng, W. & Bitz, C. M. Teleconnection mechanisms to the tropical Atlantic from an abrupt freshening of the North Atlantic Ocean. Geophys. Res. Lett. 35, L07704 (2008).

    Article  Google Scholar 

  34. Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Clim. 20, 3434–3451 (2007).

    Article  Google Scholar 

  35. Chiang, J. C. H. & Bitz, C. M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dyn. 25, 477–496 (2005).

    Article  Google Scholar 

  36. Bard, E., Raisbeck, G., Yiou, F. & Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52, 985–992 (2000).

    Article  Google Scholar 

  37. Shindell, D. T., Schmidt, G. A., Miller, R. L. & Mann, M. E. Volcanic and solar forcing of climate change during the preindustrial era. J. Clim. 16, 4094–4107 (2003).

    Article  Google Scholar 

  38. Ramsey, C. B. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).

    Article  Google Scholar 

  39. Druffel, E. R. M. Bomb radiocarbon in the Pacific: Annual and seasonal timescale variations. J. Mar. Res. 45, 667–698 (1987).

    Article  Google Scholar 

  40. Geitler, L. Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz: 14 (1985 reprint: Königstein, Koletz Scientific Books) (Akademische, 1932).

    Google Scholar 

  41. Komárek, J. & Anagnostidis, K. Süßwasserflora von Mitteleuropa (Gustav Fischer, 1999).

    Google Scholar 

  42. Komárek, J. & Anagnostidis, K. Süßwasserflora von Mitteleuropa (Gustav Fischer, 2005).

    Google Scholar 

  43. Smittenberg, R. H. & Sachs, J. P. Purification of dinosterol for hydrogen isotopic analysis using high-performance liquid chromatography–mass spectrometry. J. Chromatogr. A. 1169, 70–76 (2007).

    Article  Google Scholar 

  44. Wallace, J. M., Mitchell, T. P. & Lau, A. K.-H. Legates/MSU precipitation climatology, <http://jisao.washington.edu/legates_msu/> (1995).

  45. Jones, P. D. & Mann, M. E. Climate over past millennia. Rev. Geophys. 42, RG2002 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the US National Science Foundation (J.P.S.), the US National Oceanic and Atmospheric Administration (J.P.S.), the Gary Comer Science and Education Foundation (J.P.S.) and the Alexander-von-Humboldt foundation through a Feodor-Lynen Research Fellowship (D.S.). Discussions with J. Chiang, K. Takahashi, A. Timmerman, M. Wallace, G. Philander, C. Wunsch, P. Colinvaux and C. Saenger improved this manuscript. M. Miller, C. Saenger, M. Dawson, L. Martin, P. Colin, L. Bell, The Coral Reef Research Foundation of Palau, J. Overpeck, J. Conroy, P. Colinvaux, M. Steinitz-Kannan, S. Fukada, K. Anderson, J. Briden and C. Corbett assisted with field work. O. Kawka, B. Demianew and R. Rottenfusser assisted in the laboratory. The Galápagos National Park, the Charles Darwin Foundation, the Republic of Kiribati and the Republic of Palau issued permits and provided assistance with field work.

Author information

Authors and Affiliations

Authors

Contributions

J.P.S. conceived the research, acquired financial support, carried out field work and wrote the paper. D.S. contributed the Line Island data, aided by S.G., and assisted with writing. Z.Z. contributed the El Junco data and assisted with writing. R.H.S. carried out field work, contributed the Palau data and assisted with writing. D.S.B. assisted with writing.

Corresponding author

Correspondence to Julian P. Sachs.

Supplementary information

Supplementary Table S1

Supplementary Information (PDF 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, J., Sachse, D., Smittenberg, R. et al. Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nature Geosci 2, 519–525 (2009). https://doi.org/10.1038/ngeo554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing