Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The influence of climate on the tectonic evolution of mountain belts

An Erratum to this article was published on 30 August 2009

This article has been updated

Abstract

Simple physical arguments, analogue experiments and numerical experiments all suggest that the internal dynamics of actively deforming collisional mountain ranges are influenced by climate. However, obtaining definitive field evidence of a significant impact of climate on mountain building has proved challenging. Spatial correlations between intense precipitation or glaciation and zones of rapid rock-uplift have indeed been documented in numerous mountain ranges, and are consistent with model predictions. More compelling evidence — such as tectonic changes in response to (rather than just coincident with) climate change — has, however, rarely been documented. Triggered by a climate-driven increase in erosion rate, friction-dominated mountain ranges are expected to show a number of simultaneous responses: a decrease in the width of the range, a temporary increase in sediment yield, a persistent increase in the rate of rock uplift and a reduction in the subsidence rate of surrounding basins. The most convincing field evidence for such a coordinated response of a mountain range to climate change comes from the European Alps and the St Elias range of Alaska.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Change history

  • 30 August 2009

    In the version of this Review originally published, Fig. 4d was incorrect. This has now been corrected in the HTML and PDF versions of the Review.

References

  1. Dahlen, F. A., Suppe, J. & Davis, D. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. J. Geophys. Res. 89, 10087–10101 (1984).

    Google Scholar 

  2. Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

    Google Scholar 

  3. Stockmal, G. S. Modeling of large-scale accretionary wedge deformation. J. Geophys. Res. 88, 8271–8287 (1983).

    Google Scholar 

  4. Jamieson, R. A. & Beaumont, C. Orogeny and metamorphism: A model for deformation and pressure-temperature-time paths with applications to the central and southern Appalachians. Tectonics 7, 417–445 (1988).

    Google Scholar 

  5. Barr, T. D., Dahlen, F. A. & McPhail, D. C. Brittle frictional mountain building. 3. Low-grade metamorphism. J. Geophys. Res. 96, 10319–10338 (1991).

    Google Scholar 

  6. Dahlen, F. A. & Suppe, J. in Processes in Continental Lithospheric Deformation: Geological Society of America Special Paper 218 (eds Clark, S. P. Jr, Burchfiel, B. C. & Suppe, J.) 161–178 (Geological Society of America, 1988).

    Google Scholar 

  7. Koons, P. O. The two-sided orogen: Collision and erosion from the sand box to the Southern Alps, New Zealand. Geology 18, 679–682 (1990).

    Google Scholar 

  8. Willett, S. D. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res. 104, 28957–28981 (1999).

    Google Scholar 

  9. Willett, S. D., Beaumont, C. & Fullsack, P. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21, 371–374 (1993).

    Google Scholar 

  10. Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R) 1–18 (Chapman & Hall, 1992).

    Google Scholar 

  11. Beaumont, C., Kamp, P., Hamilton, J. & Fullsack, P. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations. J. Geophys. Res. 101, 3333–3359 (1996).

    Google Scholar 

  12. Batt, G. E. & Braun, J. The tectonic evolution of the Southern Alps, New Zealand: Insights from fully thermally coupled dynamical modelling. Geophys. J. Int. 136, 403–420 (1999).

    Google Scholar 

  13. Montgomery, D. R., Balco, G. & Willett, S. D. Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582 (2001).

    Google Scholar 

  14. Isacks, B. L. Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J. Geophys. Res. 93, 3211–3231 (1988).

    Google Scholar 

  15. Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001).

    Google Scholar 

  16. Koons, P. O., Zeitler, P. K., Chamberlain, C., Craw, D. & Meltzer, A. S. Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. Am. J. Sci. 302, 749–773 (2002).

    Google Scholar 

  17. Zeitler, P. K. et al. Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20, 712–728 (2001).

    Google Scholar 

  18. Beaumont, C., Kooi, H. & Willett, S. in Geomorphology and Global Tectonics (ed. Summerfield, M. A) 29–55 (Wiley, 2000).

    Google Scholar 

  19. Persson, K. S. & Sokoutis, D. Analogue models of orogenic wedges controlled by erosion. Tectonophysics 356, 323–336 (2002).

    Google Scholar 

  20. Hoth, S., Adam, J., Kukowshi, N. & Oncken, O. in Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398 (eds Willett, S. D., Hovius, N., Brandon, M. & Fisher, D. M.) 201–225 (Penrose Conference Series, Geological Society of America, 2006).

    Google Scholar 

  21. Mugnier, J. L. et al. Thrust geometry controlled by erosion and sedimentation: A view from analogue models. Geology 25, 427–430 (1997).

    Google Scholar 

  22. Persson, K. S., Garcia-Castellanos, D. & Sokoutis, D. River transport effects on compressional belts: First results from an integrated analogue-numerical model. J. Geophys. Res. 109, 10.1029/2002JB002274 (2004).

  23. Konstantinovskaia, E. & Malavieille, J. Erosion and exhumation in accretionary orogens: Experimental and geological approaches. Geochem. Geophy. Geosy. 6, 10.1029/2004GC000794 (2005).

  24. Simpson, G. Dynamic interactions between erosion, deposition, and three-dimensional deformation in compressional fold belt settings. J. Geophys. Res. 109, 10.1029/2003JF000111 (2004).

  25. Stolar, D. B., Roe, G. H. & Willett, S. Controls on the patterns of topography and erosion rate in a critical orogen. J. Geophys. Res. 112, 10.1029/2006JF000713 (2007).

  26. Naylor, M. & Sinclair, H. D. Punctuated thrust deformation in the context of doubly vergent thrust wedges: Implications for the localization of uplift and exhumation. Geology 35, 559–562 (2007).

    Google Scholar 

  27. Hilley, G. E., Strecker, M. & Ramos, V. A. Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold and thrust belt, Argentina. J. Geophys. Res. 109, 10.1029/2002JB002282 (2004).

  28. Whipple, K. & Meade, B. J. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state. J. Geophys. Res. 109, 10.1029/2003JF000019 (2004).

  29. Whipple, K. X. & Meade, B. J. Orogen response to changes in climatic and tectonic forcing. Earth Planet. Sci. Lett. 243, 218–228 (2006).

    Google Scholar 

  30. Roe, G. H., Stolar, D. R. & Willett, S. D. in Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398 (eds Willett, S. D., Hovius, N., Brandon, M. & Fisher, D. M.) 227–239 (Penrose Conference Series, Geological Society of America, 2006).

    Google Scholar 

  31. Stolar, D. R., Willett, S. D. & Roe, G. H. in Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398 (eds Willett, S. D., Hovius, N., Brandon, M. & Fisher, D. M.) 241–250 (Penrose Conference Series, Geological Society of America, 2006).

    Google Scholar 

  32. Tomkin, J. H. & Roe, G. H. Climate and tectonic controls on glaciated critical-taper orogens. Earth Planet. Sci. Lett. 262, 385–397 (2007).

    Google Scholar 

  33. Ahnert, F. Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. Am. J. Sci. 268, 243–263 (1970).

    Google Scholar 

  34. Montgomery, D. R. & Brandon, M. T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201, 481–489 (2002).

    Google Scholar 

  35. Kooi, H. & Beaumont, C. Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction. J. Geophys. Res. 99, 12191–112209 (1994).

    Google Scholar 

  36. Densmore, A. L., Ellis, M. A. & Anderson, R. S. Landsliding and the evolution of normal-fault-bounded mountains. J. Geophys. Res. B 103, 15203–215219 (1998).

    Google Scholar 

  37. Small, E. E. & Anderson, R. S. Geomorphically driven Late Cenozoic rock uplift in the Sierra Nevada, California. Science 270, 277–280 (1995).

    Google Scholar 

  38. Pazzaglia, F. J. & Brandon, M. T. Macrogeomorphic evolution of the post-Triassic Appalachian mountains determined by deconvolution of the offshore basin sedimentary record. Basin Res. 8, 255–278 (1996).

    Google Scholar 

  39. Turcotte, D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems (Wiley, 1982).

    Google Scholar 

  40. Bonnet, S. & Crave, A. Landscape response to climate change: Insights from experimental modeling and implications for tectonics versus climatic uplift of topography. Geology 31, 123–126 (2003).

    Google Scholar 

  41. Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology (Boulder) 30, 175–178 (2002).

    Google Scholar 

  42. Whipple, K., Kirby, E. & Brocklehurst, S. Geomorphic limits to climatically induced increases in topographic relief. Nature 401, 39–43 (1999).

    Google Scholar 

  43. Adams, J. in Tectonic Geomorphology (eds Morisawa, M. & Hack, J. T.) 105–128 (Allen and Unwin, 1985).

    Google Scholar 

  44. Suppe, J. Mechanics of mountain-building and metamorphism in Taiwan. Geol. Soc. of China Mem. 4, 67–89 (1981).

    Google Scholar 

  45. Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull. 110, 985–1009 (1998).

    Google Scholar 

  46. Pazzaglia, F. J. & Brandon, M. T. A fluvial record of long-term steady-state uplift and erosion across the Cascadia forearc high, western Washington State. Am. J. Sci. 301, 385–431 (2001).

    Google Scholar 

  47. Cederbom, C. E., Sinclair, H. D., Schlunegger, F. & Rahn, M. K. Climate-induced rebound and exhumation of the European Alps. Geology 32, 709–712 (2004).

    Google Scholar 

  48. Champagnac, J. D., Molnar, P., Anderson, R. S., Sue, C. & Delacou, B. Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35, 195–198 (2007).

    Google Scholar 

  49. Kuhlemann, J. Post-collisional sediment budget of circum-Alpine basins (Central Europe). Memorie di Scienze Geologiche Padova 52, 1–91 (2000).

    Google Scholar 

  50. Zhang, P., Molnar, P. & Downs, W. R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).

    Google Scholar 

  51. Wager, L. R. The Arun river drainage pattern and the rise of the Himalaya. Geogr. J. 89, 239–250 (1937).

    Google Scholar 

  52. Simpson, G. D. H. Modelling interactions between fold-thrust belt deformation, foreland flexure and surface mass transport. Basin Res. 18, 125–143 (2006).

    Google Scholar 

  53. Berger, A. L. et al. Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nature Geosci. 1, 793–799 (2008).

    Google Scholar 

  54. Willett, S. D., Schlunegger, F. & Picotti, V. Messinian climate change and erosional destruction of the central European Alps. Geology 34, 613–616 (2006).

    Google Scholar 

  55. Kuhlemann, J., Frisch, W., Szekely, B., Dunkl, I. & Kazmer, M. Post-collisional sediment budget history of the Alps: tectonic versus climatic control. Int. J. Earth Sci. 91, 818–837 (2002).

    Google Scholar 

  56. Driscoll, N. W. & Haug, G. H. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation? Science 282, 436–438 (1998).

    Google Scholar 

  57. Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schonborn, G. & Kissling, E. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15, 1036–1064 (1996).

    Google Scholar 

  58. Calais, E., Nocquet, J. M., Jouanne, F. & Tardy, M. Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001 Geology 30, 651–654 (2002).

    Google Scholar 

  59. Delacou, B., Sue, C., Champagnac, J. D. & Burkhard, M. Present-day geodynamics in the bend of the western and central Alps as constrained by earthquake analysis. Geophys. J. Int. 158, 753–774 (2004).

    Google Scholar 

  60. Dadson, S. J. et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651 (2003).

    Google Scholar 

  61. Hovius, N., Stark, C. P., Chu, H. T. & Lin, J. C. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol. 108, 73–89 (2000).

    Google Scholar 

  62. Reiners, P. W. & Brandon, M. T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466 (2006).

    Google Scholar 

  63. Tricart, P., Van der Beek, P., Schwartz, S. & Labrin, E. Diachronous late-stage exhumation across the western Alpine arc: constraints from apatite fission-track thermochronology between the Pelvoux and Dora-Maira Massifs. J. Geol. Soc. 164, 163–174 (2007).

    Google Scholar 

  64. Michalski, I. & Soom, M. The Alpine thermo-tectonic evolution of the Aar and Gotthard massifs, central Switzerland: Fission track ages on zircon and apatite and K-Ar mica ages. Schweiz. Miner. Petrogr. 70, 373–387 (1990).

    Google Scholar 

  65. Leloup, P. H., Arnaud, N., Sobel, E. R. & Lacassin, R. Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc. Tectonics 24, 10.1029/2004TC001676 (2005).

  66. Hodges, K., Hurtado, J. M. & Whipple, K. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectoncis 20, 799–809 (2001).

    Google Scholar 

  67. Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Medvedev, S. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res. Solid Earth 109, 10.1029/2003JB002809 (2004).

  68. Nelson, K. D. et al. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH Results. Science 274, 1684–1688 (1996).

    Google Scholar 

  69. Finnegan, N. J. et al. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geol. Soc. Am. Bull. 120, 142–155 (2008).

    Google Scholar 

  70. Beaumont, C., Jamieson, R. A. & Nguyen, M. H. Erosion-induced reactivation of the main central thrust zone: Model and implications for channel flow in the Himalayan-Tibetan system. Eos Trans. AGU 88, T34C-01 (2007).

    Google Scholar 

  71. Avouac, J. P. in Advances in Geophysics Vol. 46 (eds Dmowska, R. & Saltzman, B) 1–80 (Elsevier, 2003).

    Google Scholar 

  72. Bollinger, L., Henry, P. & Avouac, J. P. Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58–71 (2006).

    Google Scholar 

  73. Burbank, D. W. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003).

    Google Scholar 

  74. Reiners, P. W., Ehlers, T. A., Mitchell, S. G. & Montgomery, D. R. Coupled spatial variation in precipitation and long-term erosion rates across the Washington Cascades. Nature 426, 645–647 (2003).

    Google Scholar 

  75. Wobus, C. W., Hodges, K. & Whipple, K. Has focused denudation at the Himalayan topographic front sustained active thrusting near the Main Central Thrust? Geology 31, 861–864 (2003).

    Google Scholar 

  76. Bookhagen, B. & Burbank, D. W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 33, 10.1029/2006GL026037 (2006).

  77. Thiede, R. C., Bookhagen, B., Arrowsmith, J. R., Sobel, E. R. & Strecker, M. R. Climatic control on rapid exhumation along the Southern Himalayan front. Earth Planet. Sci. Lett. 222, 791–806 (2004).

    Google Scholar 

  78. Wobus, C. W., Heimsath, A. M., Whipple, K. & Hodges, K. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008–1011 (2005).

    Google Scholar 

  79. Wobus, C. W., Whipple, K. X. & Hodges, K. V. Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital Ar-40/Ar-39 thermochronology, and thermal modeling. Tectonics 25, 10.1029/2005TC001935 (2006).

  80. Vannay, J.-C. et al. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23, 10.1029/2002TC001429 (2004).

    Google Scholar 

  81. Fuller, C. W., Willett, S., Fisher, D. & Lu, C. Y. A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics 425, 1–24 (2006).

    Google Scholar 

  82. Blythe, A. E., Burbank, D. W., Carter, A., Schmidt, K. & Putkonen, J. Plio-Quaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite [U-Th]/He analyses. Tectonics 26, 10.1029/2006TC001990 (2007).

  83. Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet. Change 12, 213–235 (1996).

    Google Scholar 

  84. Brozovic, N., Burbank, D. & Meigs, A. Climatic limits on landscape development in the Northwestern Himalaya. Science 276, 571–574 (1997).

    Google Scholar 

  85. Brocklehurst, S. & Whipple, K. Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42, 1–24 (2002).

    Google Scholar 

  86. Roe, G. H. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 33, 645–671 (2005).

    Google Scholar 

  87. Biswas, S. et al. Exhumation and uplift of the Shillong plateau and its influence on the eastern Himalayas: New constraints from apatite and zircon (U-Th-[Sm])/He and apatite fission track analyses. Tectonics 26, 10.1029/2007TC002125 (2007).

    Google Scholar 

  88. Grujic, D. et al. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology 34, 801–804 (2006).

    Google Scholar 

  89. Strecker, M. R. et al. Tectonics and climate of the southern central Andes. Annu. Rev. Earth Planet. Sci. 35, 747–787 (2007).

    Google Scholar 

  90. Huntington, K. W., Blythe, A. E. & Hodges, K. V. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett. 252, 107–118 (2006).

    Google Scholar 

  91. Kroon, D., Steens, T. & Troelstra, S. R. Onset of monsoon related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. Ocean Drilling Program Scientific Results 117, 257–263 (1991).

    Google Scholar 

  92. Zhisheng, A., Kutzbach, J. E., Prell, W. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).

    Google Scholar 

  93. Hodges, K., Wobus, C. W., Ruhl, K., Schildgen, T. & Whipple, K. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett. 220, 379–389 (2004).

    Google Scholar 

  94. Thiede, R. C., Ehlers, T. A., Bookhagen, B. & Strecker, M. R. Erosional variability along the northwest Himalaya. J. Geophys. Res. 10.1029/2008JF001010 (in the press).

Download references

Acknowledgements

I am indebted to colleagues and students for insightful discussions, in particular S. Willett, C. Beaumont, B. Meade, D. Stolar and K. Hodges. Discussions with members of the Earth System Evolution Program of the Canadian Institute for Advanced Research have been pivotal in my understanding of the interaction of climate and tectonics. A review by C. Beaumont helped improve an earlier manuscript. Funding from NSF EAR programmes in Continental Dynamics, Geomorphology and Land Use Dynamics and Tectonics supported the development of ideas in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin X. Whipple.

Supplementary information

Supplementary information

Supplementary information (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whipple, K. The influence of climate on the tectonic evolution of mountain belts. Nature Geosci 2, 97–104 (2009). https://doi.org/10.1038/ngeo413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing