Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid early Holocene deglaciation of the Laurentide ice sheet

Abstract

The demise of the Laurentide ice sheet during the early Holocene epoch is the most recent and best constrained disappearance of a large ice sheet in the Northern Hemisphere, and thus allows an assessment of rates of ice-sheet decay as well as attendant contributions to sea level rise. Here, we use terrestrial and marine records of the deglaciation to identify two periods of rapid melting during the final demise of the Laurentide ice sheet, when melting ice contributed about 1.3 and 0.7 cm of sea level rise per year, respectively. Our simulations with a fully coupled ocean–atmosphere model suggest that increased ablation due to enhanced early Holocene boreal summer insolation was the predominant cause of Laurentide ice-sheet retreat. Although the surface radiative forcing in boreal summer during the early Holocene is twice as large as the greenhouse-gas forcing expected by the year 2100, the associated increase in summer surface air temperatures is very similar. We conclude that our geologic evidence for a rapid retreat of the Laurentide ice sheet may therefore describe a prehistoric precedent for mass balance changes of the Greenland ice sheet over the coming century.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early Holocene terrestrial and marine records.
Figure 2: LIS topography and mass balance.
Figure 3: ModelE-R Output Delta Maps between 9 kyr BP and the pre-industrial era.

References

  1. Solomon, S. D., Manning, M. & Qin, D. (eds) Climate Change 2007: The Physical Basis 4th Assessment Report, IPCC 18 (Cambridge Univ. Press, Cambridge, 2007).

  2. Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level changes. Science 310, 456–460 (2005).

    Article  Google Scholar 

  3. Wild, M., Calanca, P., Scherrer, S. C. & Ohmura, A. Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J. Geophys. Res. 108, doi:10.1029/2002JD002451 (2003).

  4. Ridley, J. K., Huybrechts, P., Gregory, J. M. & Lowe, J. A. Elimination of the Greenland Ice Sheet in a high CO2 climate. J. Clim. 18, 3409–3427 (2005).

    Article  Google Scholar 

  5. Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice-sheet. Nature 428, 616. (2004).

    Article  Google Scholar 

  6. Berger, L. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 17, 211–219 (1991).

    Google Scholar 

  7. Licciardi, J. M., Clark, P. U., Jenson, J. W. & MacAyeal, D. R. Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat. Sci. Rev. 17, 427–488 (1998).

    Article  Google Scholar 

  8. Mitchell, J. F. B., Grahame, N. S. & Needham, K. J. Climate simulations for 9000 years before present: Seasonal variations and effect of the Laurentide Ice Sheet. J. Geophys. Res. Atmos. 93, 8283–8303 (1988).

    Article  Google Scholar 

  9. Pollard, D., Bergengren, J. C., Stillwell-Soller, L. M., Felzer, B. & Thompson, S. L. Climate simulations for 10,000 and 6,000 years BP. Paleoclimates 2, 183–218 (1998).

    Google Scholar 

  10. Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0–180 W). Quat. Sci. Rev. 23, 529–560 (2004).

    Article  Google Scholar 

  11. Kaplan, M. R. & Wolfe, A. P. Spatial and temporal variability of Holocene temperature in the north Atlantic. Quat. Res. 65, 223–231 (2006).

    Article  Google Scholar 

  12. Came, R. E., Oppo, D. W. & McManus, J. F. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. Geology 35, 315–318 (2007).

    Article  Google Scholar 

  13. Hillaire-Marcel, C., de Vernal, A., Bilodeau, G. & Weaver, A. J. Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature 410, 1073–1077 (2001).

    Article  Google Scholar 

  14. Carlson, A. E., Clark, P. U., Raisbeck, G. M. & Brook, E. J. Rapid Holocene deglaciation of the Labrador sector of the Laurentide Ice Sheet. J. Clim. 20, 5126–5133 (2007).

    Article  Google Scholar 

  15. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci 32, 111–149 (2004).

    Article  Google Scholar 

  16. Fairbanks, R. G. A 17,000 year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  17. Bard, E. B. et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).

    Article  Google Scholar 

  18. Cronin, T. M. et al. Rapid sea level rise and ice sheet response to 8,200-year climate event. Geophys. Res. Lett. 34, doi:10.1029/2007GL031318 (2007).

  19. Yu, S.-Y., Berglund, B. E., Sandgren, P. & Lambeck, K. Evidence for a rapid sea-level rise 7600 yr ago. Geology 35, 891–894 (2007).

    Article  Google Scholar 

  20. Dyke, A. S. in Quaternary Glaciations-Extent and Chronology Part II Vol. 2b (eds Ehlers, J. & Gibbard, P. L.) 373–424 (Elsevier, Amsterdam, 2004).

    Book  Google Scholar 

  21. Barber, D. C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

    Article  Google Scholar 

  22. Clark, P. U., Brook, E. J., Raisbeck, G. M., Yiou, F. & Clark, J. Cosmogenic 10Be ages of the Saglek Moraines, Torngat Mountains, Labrador. Geology 31, 617–620 (2003).

    Article  Google Scholar 

  23. Miller, G. H., Wolfe, A. P., Briner, J. P., Sauer, P. E. & Nesje, A. Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quat. Sci. Rev. 24, 1703–1721 (2005).

    Article  Google Scholar 

  24. Hillaire-Marcel, C. & Bilodeau, G. Instabilities in the Labrador Sea water mass structure during the last climatic cycle. Can. J. Earth Sci. 37, 795–809 (2000).

    Article  Google Scholar 

  25. Hillaire-Marcel, C., de Vernal, A. & Piper, D. J. W. Lake Agassiz final drainage event in the northwest North Atlantic. Geophys. Res. Lett. 34, doi:10.1029/2007GL030396 (2007).

  26. Keigin, L. D., Sachs, J. P., Rosenthal, Y. & Boyle, E. A. The 8200 year B.P. event in the slope water system, western subpolar north Atlantic. Paleoceanography 20, doi:10.1029/2004PA001074 (2005).

  27. LeGrande, A. N. et al. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl Acad. Sci. 103, 837–842 (2006).

    Article  Google Scholar 

  28. Paterson, W. S. B. The Physics of Glaciers (Butterworth-Heinemann, Oxford, 1994).

    Google Scholar 

  29. Schmidt, G. A., LeGrande, A. N. & Hoffmann, G. Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J. Geophys. Res. Atmos. 112, doi:10.1029/2006JD007781 (2007).

  30. Hansen, J. et al. Dangerous human-made interferences with climate: a GISS modelE study. Atmos. Chem. Phys. 7, 2287–2312 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Stoner for discussion of Orphan Knoll cores, and L. Keigwin and L. Skinner for sharing data. This research was financially supported by National Science Foundation grants ATM-05-01351 & ATM-05-01241 to D.W.O. and G.A.S., start-up funds from the University of Wisconsin-Madison and a Woods Hole Oceanographic Institution Postdoctoral Scholarship to A.E.C., and the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute (D.W.O. and R.E.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.E.C. compiled terrestrial and marine records of LIS retreat. A.N.L. and G.A.S. developed the AOGCM model. A.N.L. initiated and analysed the 9 kyr BP simulations. A.N.L., G.A.S., A.E.C. and J.M.L. designed model boundary conditions. A.E.C., R.E.C., E.A.O. and D.W.O. compiled oxygen isotope data. A.N.L., A.E.C. and F.S.A. interpreted LIS mass balance. All authors collaborated on the text.

Corresponding author

Correspondence to Anders E. Carlson.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 and tables S1-S2 (PDF 5338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, A., LeGrande, A., Oppo, D. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nature Geosci 1, 620–624 (2008). https://doi.org/10.1038/ngeo285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing