Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres

Abstract

Despite similar physical properties, the Northern and Southern Atlantic subtropical gyres have different biogeochemical regimes. The Northern subtropical gyre, which is subject to iron deposition from Saharan dust1, is depleted in the nutrient phosphate, possibly as a result of iron-enhanced nitrogen fixation2. Although phosphate depleted, rates of carbon fixation in the euphotic zone of the North Atlantic subtropical gyre are comparable to those of the South Atlantic subtropical gyre3, which is not phosphate limited. Here we use the activity of the phosphorus-specific enzyme alkaline phosphatase to show potentially enhanced utilization of dissolved organic phosphorus occurring over much of the North Atlantic subtropical gyre. We find that during the boreal spring up to 30% of primary production in the North Atlantic gyre is supported by dissolved organic phosphorus. Our diagnostics and composite map of the surface distribution of dissolved organic phosphorus in the subtropical Atlantic Ocean reveal shorter residence times in the North Atlantic gyre than the South Atlantic gyre. We interpret the asymmetry of dissolved organic phosphorus cycling in the two gyres as a consequence of enhanced nitrogen fixation in the North Atlantic Ocean4, which forces the system towards phosphorus limitation. We suggest that dissolved organic phosphorus utilization may contribute to primary production in other phosphorus-limited ocean settings as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorus data from cruises AMT10 (April 2000), D279 (April 2004), AMT14 (May 2004), AMT15 (Oct 2004), CD171 (May 2005), AMT16 (June 2005) and AMT17 (Nov 2005).
Figure 2: Biogeochemical results.
Figure 3: Seasonal data for the NASG and the SASG.

Similar content being viewed by others

References

  1. Duce, R. A. & Tindale, N. W. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36, 1715–1726 (1999).

    Article  Google Scholar 

  2. Wu, J., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the Western Atlantic Ocean. Science 289, 759–762 (2000).

    Article  Google Scholar 

  3. Poulton, A. J. et al. Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean. Deep-Sea Res. II 53, 1593–1610 (2006).

    Article  Google Scholar 

  4. Reynolds, S. E. et al. How widespread and important is N2 fixation in the North Atlantic Ocean? Glob. Biogeochem. Cycles 21, GB4015 (2007).

    Article  Google Scholar 

  5. Williams, R. G. & Follows, M. J. in Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change (ed. Fasham, M.) (Springer, Berlin, 2003).

    Google Scholar 

  6. Redfield, A. C. in On The Proportions of Organic Derivatives in Seawater and their Relation to the Composition of Plankton (ed. Daniel, R. J.) (Univ. Press of Liverpool, Liverpool, 1934).

    Google Scholar 

  7. Tyrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Article  Google Scholar 

  8. Beardall, J., Young, E. & Roberts, S. Approaches for determining phytoplankton nutrient limitation. Aquat. Sci. 63, 44–69 (2001).

    Article  Google Scholar 

  9. Hoppe, H.-G. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P., Sherr, B., Sherr, E. & Cole, J. J.) 423–431 (Lewis Publishers, Boca Raton, FL, 1993).

    Google Scholar 

  10. McGillicuddy, D. J. Jr & Robinson, A. R. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I 44, 1427–1450 (1997).

    Article  Google Scholar 

  11. Carlson, C. A. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 91–151 (Academic, London, 2002).

    Book  Google Scholar 

  12. Karl, D. M. & Byorkman, K. M. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 249–367 (Academic, London, 2002).

    Book  Google Scholar 

  13. Li, W. K. W. Consideration of errors in estimating kinetic-parameters based on Michaelis–Menten formalism in microbial ecology. Limnol. Oceanogr. 28, 185–190 (1983).

    Article  Google Scholar 

  14. Roussenov, V., Williams, R. G., Mahaffey, C. & Wolff, G. A. Does the transport of dissolved organic nutrients affect export production in the Atlantic Ocean? Glob. Biogeochem. Cycles 20, GB3002 (2006).

    Article  Google Scholar 

  15. Jenkins, W. J. H-3 and He-3 in the beta-triangle—observations of gyre ventilation and oxygen utilization rates. J. Phys. Oceanogr. 17, 763–783 (1987).

    Article  Google Scholar 

  16. Tyrrell, T. et al. Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. J. Plankton Res. 25, 405–416 (2003).

    Article  Google Scholar 

  17. Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439, 68–71 (2006).

    Article  Google Scholar 

  18. Sohm, J. A. & Capone, D. G. Phosphorus dynamics of the tropical and subtropical North Atlantic: Trichodesmium spp. versus bulk plankton. Mar. Ecol. Prog. Ser. 317, 21–28 (2006).

    Article  Google Scholar 

  19. Hurrell, J. W. in The North Atlantic Oscillation: Climate Significance and Environmental Impact (eds Kushnir, Y., Ottersen, G. & Visbeck, M.) (American Geophysical Union, Washington, DC, 2003).

    Book  Google Scholar 

  20. Emerson, S. et al. Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389, 951–954 (1997).

    Article  Google Scholar 

  21. Thingstad, T. F. et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309, 1068–1071 (2005).

    Article  Google Scholar 

  22. Karl, D. M., Bidigare, R. R. & Letelier, R. M. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Res. II 48, 1449–1470 (2001).

    Article  Google Scholar 

  23. Antia, N. J., McAllistel, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H. Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr. 8, 166–183 (1963).

    Article  Google Scholar 

  24. Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    Article  Google Scholar 

  25. Welschmeyer, N. A. Fluorometric analysis of chlorophyll-A in the presence of chlorophyll-B and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).

    Article  Google Scholar 

  26. Zubkov, M. V., Sleigh, M. A., Burkill, P. H. & Leakey, R. J. G. Picoplankton community structure on the Atlantic Meridional Transect: A comparison between seasons. Prog. Oceanogr. 45, 369–386 (2000).

    Article  Google Scholar 

  27. Sanders, R. & Jickells, T. Total organic nutrients in Drake Passage. Deep-Sea Res. I 47, 997–1014 (1999).

    Article  Google Scholar 

  28. Woodward, E. M. S. & Rees, A. P. Nutrient distributions in an anticyclonic eddy in the northeast Atlantic Ocean, with reference to nanomolar ammonium concentrations. Deep-Sea Res. II 48, 775–793 (2001).

    Article  Google Scholar 

  29. Abell, J., Emerson, S. & Renaud, P. Distributions of TOP, TON and TOC in the North Pacific subtropical gyre: Implications for nutrient supply in the surface ocean and remineralization in the upper thermocline. J. Mar. Res. 58, 203–222 (2000).

    Article  Google Scholar 

  30. Armstrong, F. A. J., Williams, P. M. & Strickland, J. D. H. Photo-oxidation of organic matter in sea water by ultra-violet radiation analytical and other applications. Nature 211, 481–483 (1966).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Poulton for the analysis of chlorophyll a, M. Zubkov for the determination of bacterial numbers and K. Chamberlain, T. Lesworth and M. Stinchcombe for help with the analysis of inorganic and organic nutrients. We are grateful to the office, crew and technical support of RRS J. C. Ross, RRS Discovery and RRS C. Darwin. This study was supported by the UK Natural Environment Research Council through the Atlantic Meridional Transect consortium (NER/O/S/2001/00680) and the 36 N consortium (NER/O/S/2003/00625).

Author information

Authors and Affiliations

Authors

Contributions

R.L.M., S.E.R., G.A.W. and R.G.W wrote the paper. G.A.W. and R.G.W. designed the research programme. R.L.M., S.E.R., S.T.V., E.M.S.W., A.L., X.P., and R.S. carried out the field work. R.S. and E.P.A. oversaw the analysis of the organic nutrients.

Corresponding author

Correspondence to George A. Wolff.

Supplementary information

Supplementary Information

Supplementary tables S1-S7 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mather, R., Reynolds, S., Wolff, G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1, 439–443 (2008). https://doi.org/10.1038/ngeo232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing