Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of subglacial water in ice-sheet mass balance

Abstract

In the coming decades, significant changes in the polar regions will increase the contribution of ice sheets to global sea-level rise. Under the ice streams and outlet glaciers that deliver ice to the oceans, water and deformable wet sediments lubricate the base, facilitating fast ice flow. The influence of subglacial water on fast ice flow depends on the geometry and capacity of the subglacial hydrologic system: water moving rapidly through a well-connected system of conduits or channels will have little impact on ice-sheet velocities, but water injected into a spatially dispersed subglacial system may reduce the effective pressure at the base of the ice sheet, and thereby trigger increased ice-sheet velocities. In Greenland, the form of the subglacial hydrologic system encountered by increasing surface melt water will determine the influence of changing atmospheric conditions on ice-sheet mass balance. In Antarctica, subglacial lakes have the capacity to both modulate velocities in ice streams and outlet glaciers and provide nucleation points for new fast ice-flow tributaries. Climate models of ice-sheet responses to global change remain incomplete without a parameterization of subglacial hydrodynamics and ice dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recent estimates of ice sheet mass balance based on surface elevation, changing gravity fields and changing estimates for Greenland and Antarctica.
Figure 2: Distribution of water for the polar ice sheets.

Similar content being viewed by others

References

  1. Cruikshank, J. Do glaciers listen?: Local Knowledge, Colonial Encounters, and Social Imagination (UBC Press, Seattle, University of Washington Press, Vancouver, 2005).

    Google Scholar 

  2. Small, C. & Cohen, J. E. Continual physiography, climate and the global distribution of human population. Curr. Anthropol. 45, 269–277 (2004).

    Article  Google Scholar 

  3. Cabanes, C., Cazenave, A. & Le Provost, C. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840–842 (2001).

    Article  Google Scholar 

  4. Cazenave, A. How fast are the ice sheets melting? Science 314, 1250–1252 (2006).

    Article  Google Scholar 

  5. Meier, M. F. et al. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317, 1064–1067 (2007).

    Article  Google Scholar 

  6. Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland ice sheet. Science 311, 986–990 (2006).

    Article  Google Scholar 

  7. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  8. Lemke, P. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 337–383 (Cambridge Univ. Press, Cambridge, UK and New York, USA, 2007).

    Google Scholar 

  9. Bamber, J. L., Layberry, R. L. & Gogineni, S. A new ice thickness and bed data set for the Greenland ice sheet. 1. Measurement, data reduction, and errors. J. Geophys. Res. —Atmos. 106, 33773–33780 (2001).

    Article  Google Scholar 

  10. Eldrett, J. S. et al. Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179 (2007).

    Article  Google Scholar 

  11. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).

    Article  Google Scholar 

  12. Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000).

    Article  Google Scholar 

  13. Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007).

    Article  Google Scholar 

  14. Lythe, M. B. & Vaughan, D. G. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res.— Sol. Ea. 106, 11335–11351 (2001).

    Article  Google Scholar 

  15. Flower, B. P. Middle Miocene deep-water paleoceanography in the Southwest Pacific — Relations with East Antarctic ice-sheet development. Paleoceanography 10, 1095–1112 (1995).

    Article  Google Scholar 

  16. Scherer, R. P. et al. Pleistocene collapse of the West Antarctic Ice Sheet. Science 281, 82–85 (1998).

    Article  Google Scholar 

  17. Alley, R. B. & Bindshadler, R. A. The West Antarctic Ice Sheet and sea level change. Antarctic Research Series 77, 1–11 (2001).

    Google Scholar 

  18. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

    Article  Google Scholar 

  19. Flower, B. P. & Kennett, J. P. Middle Miocene ocean-climate transition — High-resolution oxygen and carbon isotopic records from Deep-Sea Drilling Project Site 588a, southwest Pacific. Paleoceanography 8, 811–843 (1993).

    Article  Google Scholar 

  20. Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier. Nature 432, 608–610 (2004).

    Article  Google Scholar 

  21. Krabill, W. et al. Greenland Ice Sheet: Increased coastal thinning. Geophys. Res. Lett. 31, 10.1029/2004GL021533 (2004).

  22. Zwally, H. J. et al. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol. 51, 509–527 (2005).

    Article  Google Scholar 

  23. Thomas, R., Frederick, E., Krabill, W., Manizade, S. & Martin C. Progressive increase in ice loss from Greenland. Geophys. Res. Lett. 33, 10.1029/2006GL026075 (2006).

  24. Johannessen, O. Recent ice-sheet growth in the interior of Greenland. Science 310, 5750 (2005).

    Article  Google Scholar 

  25. Luthcke, S. B. et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314, 1286–1289 (2006).

    Article  Google Scholar 

  26. Davis, C. H. et al. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 308 (5730), 1898–1901 (2005).

    Article  Google Scholar 

  27. Wingham, D. J., Shepherd, A., Muir, A. & Marshall, G. J. Mass balance of the Antarctic ice sheet. Evolution of the Antarctic ice sheet; new understanding and challenges. Phil. Trans. R. Soc. 364, 1627–1635 (2006).

    Article  Google Scholar 

  28. Velicogna, I. & Wahr, J. Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 1754–1756 (2006).

    Article  Google Scholar 

  29. Chen, J. L., Wilson, C. R., Blankenship, D. D. & Tapley, B. D. Antarctic mass rates from GRACE. Geophys. Res. Lett. 33, 10.1029/2006GL026369 (2006).

  30. Rignot, E. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Phil. Trans. R. Soc. A 364, 1637–1655 (2006).

    Article  Google Scholar 

  31. Alley, R. B. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Article  Google Scholar 

  32. Blankenship, D. D. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322, 54–57 (1986).

    Article  Google Scholar 

  33. Clarke, G. K. C. Subglacial processes. Annu. Rev. Earth Planet. Sci. 33, 247–276 (2005).

    Article  Google Scholar 

  34. Kamb, B. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion in the West Antarctic Ice Sheet. Antarctic Research Series 77, 157–199 (2001).

    Google Scholar 

  35. Robin, G. d. Q. Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol. 2, 523–532 (1955).

    Article  Google Scholar 

  36. Gow, A. J., Ueda, H. T. & Garfield, D. E. Antarctic Ice Sheet — Preliminary results of first core hole to bedrock. Science 161, 1011–1013 (1968).

    Article  Google Scholar 

  37. Flowers, G. E. & Clarke, G. K. C. A multi-component coupled model of glacier hydrology: 1. Theory and synthetic examples. J. Geophys. Res. 107, 10.1029/2001JB001122 (2002).

  38. Steffen, K., Nghiem, S. V., Huff, R. & Neumann, G. The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations. Geophys. Res. Lett. 31, 10.1029/2004GL020444 (2004).

  39. Zwally, H. J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

    Article  Google Scholar 

  40. Abdalati, W. & Steffen, K., Greenland ice sheet melt extent: 1979–1999. J. Geophys. Res. — Atmos. 106, 33983–33988 (2001).

    Article  Google Scholar 

  41. Tedesco, M., Abdalati, W. & Zwally, H. J. Persistent surface snowmelt over Antarctica (1987–2006) from 19.35 GHz brightness temperatures. Geophys. Res. Lett. 34, 10.1029/2007GL031199 (2007).

  42. Paterson, W. S. B. The Physics of Glaciers 3rd edn (Pergamon, Oxford, UK, Tarrytown, New York, 1994).

    Google Scholar 

  43. Fahnestock, M. et al. High geothermal heat flow basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–2342 (2001).

    Article  Google Scholar 

  44. Fountain, A. G. & Walder, J. S. Water flow through temperate glaciers. Rev. Geophys. 36, 299–328 (1998).

    Article  Google Scholar 

  45. Rothlisberger, H. Water pressure in intra- and subglacial channels. J. Glaciol. 11, 117–203 (1972).

    Article  Google Scholar 

  46. Nye, J. F. Water flow in glaciers: jokulhlaups, tunnels and veins. J. Glaciol. 17, 181–207 (1976).

    Article  Google Scholar 

  47. Weertman, J. On the sliding of glaciers. J. Glaciol. 3, 33–38 (1957).

    Article  Google Scholar 

  48. Lliboutry, L. Contribution à la théorie du frottement des glaciers sur leur lit. C. R. Séances Acad. Sci. 247D, 318–320 (1958).

    Google Scholar 

  49. Kamb, B. Glacial surge mechanism 1982–1983 surge of variegated glacier, Alaska. Science 227, 269–279 (1985).

    Article  Google Scholar 

  50. Kamb, B., Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92, 9083–9100 (1987).

    Article  Google Scholar 

  51. Kamb, B. et al. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 2. Interpretation. J. Geophys. Res. — Sol. Ea. 99, 15231–15244 (1994).

    Article  Google Scholar 

  52. Iverson, N. R., Hanson, B., Hooke, R. L. & Jannson, P. Flow mechanism of glaciers on soft beds. Science 267, 80–81 (1995).

    Article  Google Scholar 

  53. Siegert, M. J. et al. A revised inventory of Antarctic subglacial lakes. Antarctic Science 17, 453–460 (2005).

    Article  Google Scholar 

  54. Vaughan, D. G. A. et al. Topographic and hydrological controls on Subglacial Lake Ellsworth, West Antarctica. Geophys. Res. Lett. 34, 10.1029/2007GL030769 (2007).

  55. Bell, R. E. et al. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature. 445, 904–907 (2007).

    Article  Google Scholar 

  56. Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544–1548 (2007).

    Article  Google Scholar 

  57. Smith, B. E., Joughin, I. R., Fricker, H. A. & Tulaczyk, S. Subglacial water transport throughout Antarctica from ICESAT laser altimetry. Eos Trans. AGU 88 (Fall Meet. Suppl.), abstract C53A-08 (2007).

  58. Bell, R. E., Studinger, M., Fahnestock, M. A. & Shuman, C. A. Tectonically controlled subglacial lakes on the flanks of the Gamburtsev Subglacial Mountains, East Antarctica. Geophys. Res. Lett. 33, 10.1029/2005GL025207 (2006).

  59. Bjornsson, H., Hydrological characteristics of the drainage system beneath a surging glacier. Nature 395, 771–774 (1998).

    Article  Google Scholar 

  60. Flowers, G. E., Bjornsson, H., Palsson, F. & Clarke, G. K. C. A coupled sheet-conduit mechanism for jokulhlaup propagation. Geophys. Res. Lett. 31, 10.1029/2003GL019088 (2004).

  61. Bartholomaus, T. C., Anderson, R. S. & Anderson, S. P. Response of glacier basal motion to transient water storage. Nature Geosci. 1, 33–37 (2007).

    Article  Google Scholar 

  62. Jouzel, J. More than 200 meters of lake ice above subglacial Lake Vostok. Science 286, 2138–2141 (1999).

    Article  Google Scholar 

  63. Bell, R. E., Origin and fate of Lake Vostok water refrozen to the base of the East Antarctic ice sheet. Nature 416, 307–310 (2002).

    Article  Google Scholar 

  64. Joughin, I. et al. Seasonal speedup along the Western Flank of the Greenland Ice Sheet. Science (in the press).

  65. Price, S. F., Payne, A. J., Catania, G. A. & Neumann, T. A. Seasonal acceleration of inland ice via longitudinal coupling to marginal ice. J. Glaciol. (in the press).

  66. Joughin, I., Tulaczyk, S., Fahnestock, M. & Kwok, R. A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry. Science 274, 228–230 (1996).

    Article  Google Scholar 

  67. Das, S. B. et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science (in the press).

  68. Peters, L. E., Anandakrishnan, S., Alley, R. B. & Smith, A. M. Extensive storage of basal meltwater in the onset region of a major West Antarctic ice stream. Geology 35, 251–254 (2007).

    Article  Google Scholar 

  69. Gray, L. et al. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, 10.1029/2004GL021387 (2005).

  70. Stearns, L. A. & Hamilton, G. S. Thinning and acceleration of East Antarctic outlet glaciers. Eos Trans. AGU 88 (Fall Meet. Suppl.), abstract C41C-08 (2007).

  71. Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).

    Article  Google Scholar 

  72. Lewis, A. R. et al. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology 34, 513–516 (2006).

    Article  Google Scholar 

  73. Denton, G. E. & Sugden, D. E. Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. Geogr. Ann. A 87, 67–85 (2005).

    Article  Google Scholar 

  74. Lowe, A. L. & Anderson, J. B. Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica. J. Glaciol. 49, 125–138 (2003).

    Article  Google Scholar 

  75. Goodwin, I. D. The nature and origin of a Jokulhlaup near Casey-Station, Antarctica. J. Glaciol. 34, 95–101 (1988).

    Article  Google Scholar 

  76. Leventer, A. et al. Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today 16 (12), 4–10 (2006).

    Article  Google Scholar 

  77. Sawagaki, T. & Hirakawa, K. Erosion of bedrock by subglacial meltwater, Soya Coast, East Antarctica. Geogr. Ann. A 79, 223–238 (1997).

    Article  Google Scholar 

  78. Anderson, J. B. & Fretwell, L. O. Geomorphology of the onset of a paleo-ice stream, Marguerite Bay, Antarctic Peninsula. Earth Surf. Processes 33, 503–512 (2008).

    Article  Google Scholar 

  79. Siegert, M. J. & Bamber, J. L. Subglacial water at the heads of Antarctic ice stream tributaries. J. Glaciol. 46, 702–703 (2000).

    Article  Google Scholar 

  80. Kohler, J. Lubricating lakes. Nature 445, 830–831 (2007).

    Article  Google Scholar 

  81. Alley, R. B., Dupont, T. K., Parizek, B. R. & Anandakrishnan, S. Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Ann. Glaciol. 40, 8–14 (2005).

    Article  Google Scholar 

  82. Conway, H. et al. Switch of flow direction in an Antarctic ice stream. Nature 419, 465–467 (2002).

    Article  Google Scholar 

  83. Ng, F. & Conway, H. Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology 32, 481–484 (2004).

    Article  Google Scholar 

  84. Joughin, I., Tulaczyk, S., Bindschadler, R. & Price, S. F. Changes in west Antarctic ice stream velocities: Observation and analysis. J. Geophys. Res. — Sol. Ea. 107, 10.1029/2001JB001029 (2002).

  85. Retzlaff, R. & Bentley, C. R. Timing of stagnation of ice stream C, West Antarctica from short-pulse-radar studies of buried surface crevasses. J. Glaciol. 39, 533–561 (1993).

    Article  Google Scholar 

  86. Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).

    Article  Google Scholar 

  87. Price, S. F., Bindschadler, R. A., Hulbe, C. L. & Joughin, I. R. Post-stagnation behavior in the upstream regions of Ice Stream C, West Antarctica. J. Glaciol. 47, 283–294 (2001).

    Article  Google Scholar 

  88. MacAyeal, D. R. et al. An Ice-Shelf Model Test Based on the Ross Ice Shelf. Ann. Glaciol. 23, 46–51 (1996).

    Article  Google Scholar 

  89. Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, 10.1029/2004GL020670 (2004).

  90. Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, 10.1029/2004GL020697 (2004).

  91. Anandakrishnan, S., Catania, G. A., Alley, R. B. & Horgan, H. J. Discovery of till deposition at the grounding line of Whillans Ice Stream. Science 315, 1835–1838 (2007).

    Article  Google Scholar 

  92. Alley, R. B. et al. Effect of sedimentation on ice-sheet grounding-line stability. Science 315, 1838–1841 (2007).

    Article  Google Scholar 

  93. Payne, A. J. et al. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett. 31, 10.1029/2004GL021284 (2004).

  94. Luckman, A., Murray, T., de Lange, R. & Hanna, E. Rapid and synchronous ice-dynamic changes in East Greenland. Geophys. Res. Lett. 33, 10.1029/2005GL025428 (2006).

  95. Howat, I. M., Joughin, I. & Scambos, T. A. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315, 1559–1561 (2007).

    Article  Google Scholar 

  96. Joughin, I., Tulaczyk, S., MacAyeal, D. R. & Engelhardt, H. Melting and freezing beneath the Ross ice streams, Antarctica. J. Glaciol. 50, 96–108 (2004).

    Article  Google Scholar 

  97. Blankenship, D. D. Active volcanism beneath the West Antarctic Ice Sheet and implications for ice-sheet stability. Nature 361, 526–529 (1993).

    Article  Google Scholar 

  98. Studinger, M. et al. Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica. Earth Planet. Sci. Lett. 205, 195–210 (2003).

    Article  Google Scholar 

  99. Rignot, E. & Thomas, R. H. Mass balance of polar ice sheets. Science 297, 1502–1506 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges assistance with the manuscript from Frank Nitsche, Rachel Young and Yael Degany. Helen Fricker, Gwenn Flowers and Meredith Kelly provided helpful suggestions for the manuscript. The author received support from the US National Science Foundation for this work. LDEO contribution number: 7148.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, R. The role of subglacial water in ice-sheet mass balance. Nature Geosci 1, 297–304 (2008). https://doi.org/10.1038/ngeo186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing