Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift

Abstract

The main Ethiopian rift is an active rift in the break-up stage, and it marks the incipient boundary between the Nubia and Somalia plates1. Rifting started with the activation of large boundary faults and diffuse volcanism, followed by focused magmatism and faulting in the rift floor, along step-like segments oblique to the rift axis that now act as a protoridge for future seafloor spreading2. This concentration of volcano-tectonic activity has been thought to be either magma assisted2,3 or controlled by a change in rift kinematics, with a late oblique rifting phase that would have caused the development of the step-like fault segments that focused magma upwelling4,5. Geodetic6,7, seismic8 and stress-field9 data confirm current oblique rifting kinematics, but plate kinematics models do not predict a change in Nubia–Somalia motion in the past 11 million years10. Here, I use lithospheric-scale analogue models of oblique rifting to analyse the development of the main Ethiopian rift. I find that neither magma weakening nor a change in plate kinematics are required to simulate a two-phase evolution with successive activation of differently oriented fault systems. I conclude that rift evolution and segmentation are controlled by rift obliquity, independent of magmatic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fault pattern in the MER.
Figure 2: Analogue model with 30 of obliquity.
Figure 3: Analogue model with 45 of obliquity.

Similar content being viewed by others

References

  1. Ebinger, C. Continental breakup: The East African perspective. Astron. Geophys. 46, 2.16–2.21 (2005).

    Article  Google Scholar 

  2. Ebinger, C. J. & Casey, M. Continental breakup in magmatic provinces: An Ethiopian example. Geology 29, 527–530 (2001).

    Article  Google Scholar 

  3. Kendall, J. M., Stuart, G. W., Ebinger, C. J., Bastow, I. D. & Keir, D. Magma-assisted rifting in Ethiopia. Nature 433, 146–148 (2005).

    Article  Google Scholar 

  4. Bonini, M., Souriot, T., Boccaletti, M. & Brun, J. P. Successive orthogonal and oblique extension episodes in a rift zone: Laboratory experiments with application to the Ethiopian Rift. Tectonics 16, 347–362 (1997).

    Article  Google Scholar 

  5. Boccaletti, M., Bonini, M., Mazzuoli, R. & Trua, T. Plio-Quaternary volcanotectonic activity in the northern sector of the Main Ethiopian Rift: Relationships with oblique rifting. J. Afr. Earth Sci. 29, 679–698 (1999).

    Article  Google Scholar 

  6. Bilham, R. et al. Secular and tidal strain across the Ethiopian rift. Geophys. Res. Lett. 297, 2789–2984 (1999).

    Article  Google Scholar 

  7. Fernandes, R. M. S. et al. Angular velocities of Nubia and Somalia from continuous GPS data: Implications on present-day relative kinematics. Earth Planet. Sci. Lett. 222, 197–208 (2004).

    Article  Google Scholar 

  8. Keir, D., Ebinger, C. J., Stuart, G. W., Daly, E. & Ayele, A. Strain accommodation by magmatism and faulting as rifting proceeds to breakup: Seismicity of the northern Ethiopian rift. J. Geophys. Res. 111, B05314 (2006).

    Article  Google Scholar 

  9. Bosworth, W., Strecker, M. R. & Blisniuk, P. M. Integration of east African Paleostress and present-day stress data: Implications for continental stress field dynamics. J. Geophys. Res. 97, 11851–11865 (1992).

    Article  Google Scholar 

  10. Royer, J.-Y., Gordon, R. G. & Horner-Johnson, B. C. Motion of Nubia relative to Antarctica since 11 Ma: Implications for Nubia–Somalia, Pacific–North America, and India-Eurasia motion. Geology 34, 501–504 (2006).

    Article  Google Scholar 

  11. Mohr, P. The Ethiopian Rift System. Bull. Geophys. Obs. Addis Ababa 5, 33–62 (1962).

    Google Scholar 

  12. Gibson, I. L. The structure and volcanic geology of an axial portion of the Main Ethiopian Rift. Tectonophysics 8, 561–565 (1969).

    Article  Google Scholar 

  13. Boccaletti, M., Bonini, M., Mazzuoli, R., Abebe, B. & Piccardi, G. Quaternary oblique extensional tectonics in the Ethiopian Rift (Horn of Africa). Tectonophysics 287, 97–116 (1998).

    Article  Google Scholar 

  14. Mackenzie, G. H., Thybo, G. H. & Maguire, P. Crustal velocity structure across the Main Ethiopian Rift: Results from 2-dimensional wide-angle seismic modelling. Geophys. J. Int. 162, 996–1006 (2005).

    Article  Google Scholar 

  15. WoldeGabriel, G., Aronson, J. L. & Walter, R. C. Geology, geochronology, and rift basin development in the central sector of the Main Ethiopian Rift. Geol. Soc. Am. Bull. 102, 439–458 (1990).

    Article  Google Scholar 

  16. Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A. & Ayale, D. Evolution of the northern Main Ethiopian rift: Birth of a triple junction. Earth Planet. Sci. Lett. 224, 213–228 (2004).

    Article  Google Scholar 

  17. Bonini, M. et al. The evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation. Tectonics 24, TC1007 (2005).

    Article  Google Scholar 

  18. Casey, M., Ebinger, C., Keir, D., Gloaguen, R. & Mohamed, F. in The Afar Volcanic Province within the East African Rift System (eds Yirgu, G., Ebinger, C. J. & Maguire, P. K. H.) 143–163 (Geological Society Special Publication 259, The Geological Society, London, 2006).

    Google Scholar 

  19. Keranen. K., Klemperer. S. L., Gloaguen. R. & Eagle Working Group. Three-dimensional seismic imaging of a protoridge axis in the Main Ethiopian rift. Geology 32, 949–952 (2004).

    Article  Google Scholar 

  20. Bastow, I., Stuart, G. W., Kendall, J.-M. & Ebinger, C. J. Upper-mantle seismic structure in a region of incipient continental breakup: Northern Ethiopian Rift. Geophys. J. Int. 162, 479–493 (2005).

    Article  Google Scholar 

  21. Corti, G. et al. Analogue modelling of continental extension: A review focused on the relations between the patterns of deformation and the presence of magma. Earth Sci. Rev. 63, 169–247 (2003).

    Article  Google Scholar 

  22. Lemaux, J., Gordon, R. G. & Royer, J.-Y. The location of the Nubia–Somalia boundary along the Southwest Indian Ridge. Geology 30, 339–342 (2002).

    Article  Google Scholar 

  23. Van Wijk, J. Role of weak zone orientation in continental lithosphere extension. Geophys. Res. Lett. 32, L02303 (2005).

    Google Scholar 

  24. Keranen, K. & Klemperer, S. L. Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts. Earth Planet. Sci. Lett. 265, 96–111 (2008).

    Article  Google Scholar 

  25. Withjack, M. O. & Jamison, W. R. Deformation produced by oblique rifting. Tectonophysics 126, 99–124 (1986).

    Article  Google Scholar 

  26. Tron, V. & Brun, J.-P. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71–84 (1991).

    Article  Google Scholar 

  27. Garfunkel, Z. & Beyth, M. in The Afar Volcanic Province within the East African Rift System (eds Yirgu, G., Ebinger, C. J. & Maguire, P. K. H.) 23–42 (Geological Society Special Publication 259, The Geological Society, London, 2006).

    Google Scholar 

  28. Forsyth, D. W. Finite extension and low-angle normal faulting. Geology 20, 27–30 (1992).

    Article  Google Scholar 

  29. Kurz, T., Gloaguen, R., Ebinger, C., Casey, M. & Abebe, B. Deformation distribution and type in the Main Ethiopian Rift (MER): A remote sensing study. J. Afr. Earth Sci. 48, 100–114 (2007).

    Article  Google Scholar 

  30. Kidane, T., Platzman, E., Ebinger, C., Abebe, B. & Rochette, P. in The Afar Volcanic Province within the East African Rift System (eds Yirgu, G., Ebinger, C. J. & Maguire, P. K. H.) 165–183 (Geological Society Special Publication 259, The Geological Society, London, 2006).

    Google Scholar 

Download references

Acknowledgements

I thank G. Mulugeta for discussions. Research supported by CNR Funds (RSTL no. 105 ‘Evoluzione della parte Nord del rift Afroarabico e distribuzione regionale delle georisorse’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Corti.

Supplementary information

Supplementary Information

Supplementary figures S1-S10 (PDF 1414 kb)

Supplementary Information

Supplementary video S2 (MPG 9631 kb)

Supplementary Information

Supplementary video S3 (MPG 8933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corti, G. Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift. Nature Geosci 1, 258–262 (2008). https://doi.org/10.1038/ngeo160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing