Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of brine formation on Arctic Ocean circulation over the past 15 million years

Abstract

The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past 15 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic map of the high northern latitude seas, ocean circulation and glacial ice sheet distributions.
Figure 2: Arctic Intermediate Water evolution from the Middle Miocene to the present.
Figure 3: Late Quaternary evolution of AIW.

Similar content being viewed by others

References

  1. Peterson, B. J. et al. Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science 313, 1061–1066 (2006).

    Article  Google Scholar 

  2. Gerdes, R. & Köberle, C. Comparison of Arctic sea ice thickness variability in IPCC Climate of the 20th Century and in ocean-sea ice hindcasts. J. Geophys. Res. 112, C04S13 (2007).

    Article  Google Scholar 

  3. Moran, K. et al. The Cenozoic palaeoenvironement of the Arctic Ocean. Nature 441, 601–605 (2006).

    Article  Google Scholar 

  4. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  5. Raymo, M. E., Lisiecki, L. E. & Nisancioglu, K. H. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313, 492–495 (2006).

    Article  Google Scholar 

  6. Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).

    Article  Google Scholar 

  7. Backman. J., Moran. K., McInroy. D. B., Mayer. L. A. & the Expedition 302 Scientists. Proc. IODP Exp. Rep. 302 (Integrated Ocean Drilling Program Management International, College Station, Texas, 2006).

    Book  Google Scholar 

  8. Winter, B. L., Johnson, C. M. & Clark, D. L. Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater. Geochim. Cosmochim. Acta 61, 4181–4200 (1997).

    Article  Google Scholar 

  9. Piotrowski, A. M., Goldstein, S. L., Hemming, S. R. & Fairbanks, R. G. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307, 1933–1938 (2005).

    Article  Google Scholar 

  10. Gutjahr, M. et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 242, 351–370 (2007).

    Article  Google Scholar 

  11. Frank, M. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Rev. Geophys. 40, 1001 (2002).

    Article  Google Scholar 

  12. Aagaard, K., Swift, J. H. & Carmack, E. C. Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res. 90, 4833–4846 (1985).

    Article  Google Scholar 

  13. Karcher, M. J. & Oberhuber, J. M. Pathways and modification of the upper and intermediate waters of the Arctic Ocean. J. Geophys. Res. 107, 3049 (2002).

    Article  Google Scholar 

  14. Lacan, F. & Jeandel, C. Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions. Deep-Sea Res. I 51, 71–82 (2004).

    Article  Google Scholar 

  15. Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    Article  Google Scholar 

  16. Gladenkov, A. Y., Oleinik, A. E., Marincovich, L. & Barinov, K. B. A refined age for the earliest opening of Bering Strait. Palaeogeogr. Plaeoclimatol. Palaeoecol. 183, 321–328 (2002).

    Article  Google Scholar 

  17. Mertz, D. F., Devey, C. W., Todt, W., Stoffers, P. & Hofmann, A. W. Sr–Nd–Pb isotope evidence against plume-asthenosphere mixing north of Iceland. Earth Planet. Sci. Lett. 107, 243–255 (1991).

    Article  Google Scholar 

  18. Lacan, F. & Jeandel, C. Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature. Geochem. Geophys. Geosyst. 5, Q11006 (2004).

    Article  Google Scholar 

  19. Sharma, M., Basu, A. R. & Nesterenko, G. V. Temporal Sr-,Nd- and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics. Earth Planet. Sci. Lett. 113, 365–381 (1992).

    Article  Google Scholar 

  20. Basu, A. R., Hannigan, R. E. & Jacobsen, S. B. Melting of the Siberian mantle plume. Geophys. Res. Lett. 25, 2209–2212 (1998).

    Article  Google Scholar 

  21. Poore, H. R., Samwourth, R., White, N. J., Jones, S. M. & McCave, I. N. Neogene overflow of Northern Component Water at the Greenland–Scotland Ridge. Geochem. Geophys. Geosyst. 7, Q06010 (2006).

    Article  Google Scholar 

  22. Wright, J. D. in Tectonic Boundary Conditions for Climate Reconstructions (eds Crowley, T. J. & Burke, K.) (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  23. Wright, J. D. & Miller, K. G. Control of North Atlantic Deep Water circulation by the Greenland–Scotland Ridge. Paleoceanography 11, 157–170 (1996).

    Article  Google Scholar 

  24. Driscoll, N. W. & Haug, G. H. A short-circuit in thermohaline circulation: A cause for northern hemisphere glaciation? Science 282, 436–438 (1998).

    Article  Google Scholar 

  25. Tütken, T., Eisenhauer, A., Wiegand, B. & Hansen, B. T. Glacial-interglacial cycles in Sr and Nd isotopic composition of Arctic margin sediments triggered by the Svalbard/Barents Sea ice sheet. Mar. Geol. 182, 351–372 (2002).

    Article  Google Scholar 

  26. Shapiro, G. I., Huthnance, J. M. & Ivanov, V. V. Dense water cascading off the continental shelf. J. Geophys. Res. 108, 3390 (2003).

    Article  Google Scholar 

  27. Gill, A. E. Circulation and bottom water production in the Weddell Sea. Deep-Sea Res. 20, 111–140 (1973).

    Google Scholar 

  28. Marsland, S. J., Bindoff, N. L., Williams, G. D. & Budd, W. F. Modeling water mass formation in the Mertz Glacier Polynya and Adelie Depression, East Antarctica. J. Geophys. Res. 109, C11003 (2004).

    Article  Google Scholar 

  29. Jakobsson, M. et al. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447, 986–990 (2007).

    Article  Google Scholar 

  30. Shackleton, N. J. & Kennett, J. P. in Init. Rep. DSDP 29 (eds Shackleton, N. J. & Kennett, J. P.) 743–755 (US Govt. Printing Off., Washington, DC, 1975).

    Google Scholar 

  31. Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  Google Scholar 

  32. Burton, K. W., Lee, D.-C., Christensen, J. N., Halliday, A. N. & Hein, J. R. Actual timing of neodymium isotopic variations recorded by Fe–Mn crusts in the western North Atlantic. Earth Planet Sci. Lett. 171, 149–156 (1999).

    Article  Google Scholar 

  33. O’Nions, R. K., Frank, M., von Blanckenburg, F. & Ling, H.-F. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet Sci. Lett. 155, 15–28 (1998).

    Article  Google Scholar 

  34. Engen, Ø. Evolution of High Arctic Ocean Basins and Continental Margins. Thesis, Univ. Oslo, Norway, 184 pp (2005).

  35. Schauer, U., Fahrbach, E., Osterhus, S. & Rohardt, G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. J. Geophys. Res. 109, C06026 (2004).

    Article  Google Scholar 

  36. Jansen, E., Bleil, U., Henrich, R., Kringstad, L. & Slettmark, B. Paleoenvironmental changes in the Norwegian Sea and the Northeast Atlantic during the last 2.8 m.y.: Deep Sea Drilling Project/Ocean Drilling Program sites 610, 642, 643 and 644. Paleoceanography 3, 563–581 (1988).

    Article  Google Scholar 

  37. Henrich, R. & Baumann, K.-H. Evolution of the Norwegian Current and the Scandinavian Ice Sheets during the past 2.6 m.y.: Evidence from ODP Leg 104 biogenic carbonate and terrigenous records. Paleocean. Paleoclim. Paleoecol. 108, 75–94 (1994).

    Article  Google Scholar 

  38. Björk, G. A one-dimensional time-dependent model for the vertical stratification of the upper Arctic Ocean. J. Phys. Oceanogr. 19, 52–67 (1989).

    Article  Google Scholar 

  39. Cavalieri, D. J. & Martin, S. The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J. Geophys. Res. 99, 18343–18362 (1994).

    Article  Google Scholar 

  40. Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356 (1998).

    Article  Google Scholar 

  41. Farmer, G. L., Barber, D. & Andrews, J. Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence. Earth Planet. Sci. Lett. 209, 227–243 (2003).

    Article  Google Scholar 

  42. Lacan, F. & Jeandel, C. Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water. Geochem. Geophys. Geosyst. 6, Q12008 (2005).

    Article  Google Scholar 

  43. Backman, J., Jakobsson, M., Løvlie, R., Polyak, L. & Febo, L. A. Is the central Arctic Ocean a sediment starved basin? Quat. Sci. Rev. 23, 1435–1454 (2004).

    Article  Google Scholar 

  44. Frank, M. et al. Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: Stratigraphic and paleoclimatic implications. Paleoceanography (2007, in the press).

  45. Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).

    Article  Google Scholar 

  46. Jakobsson, M. et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28, 23–26 (2000).

    Article  Google Scholar 

  47. Svendsen, J. I. et al. Late quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

    Article  Google Scholar 

  48. Tanaka, T. et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  49. Wahsner, M. et al. Clay-mineral distribution in surface sediment of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways—A synthesis. Boreas 28, 215–233 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The ACEX sediments were acquired through joint efforts of the Integrated Ocean Drilling Program (IODP), the European Consortium for Ocean Research Drilling (ECORD) and the Swedish Polar Research Secretariat. We thank IODP Leg 302 members, in particular K. Moran and J. Backman. We also thank J. Heinze and A. Kolevica for support in the laboratory, J. Fietzke and F. Hauff for their help in running the mass spectrometers and D. Bauch and J. Zachos for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Samples given to M.F. (ACEX core) and taken by R.F.S. (PS2185) were analysed by B.A.H. at the mass spectrometry facility of IFM-GEOMAR run by A.E. All authors contributed equally to the discussion and interpretation of the results.

Corresponding author

Correspondence to Brian A. Haley.

Supplementary information

Supplementary Information

Supplementary information: table of samples (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haley, B., Frank, M., Spielhagen, R. et al. Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geosci 1, 68–72 (2008). https://doi.org/10.1038/ngeo.2007.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo.2007.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing