Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Asteroid breakup linked to the Great Ordovician Biodiversification Event

Abstract

The rise and diversification of shelled invertebrate life in the early Phanerozoic eon occurred in two major stages. During the first stage (termed as the Cambrian explosion), a large number of new phyla appeared over a short time interval 540 Myr ago. Biodiversity at the family, genus and species level, however, remained low until the second stage marked by the Great Ordovician Biodiversification Event in the Middle Ordovician period1,2,3. Although this event represents the most intense phase of species radiation during the Palaeozoic era and led to irreversible changes in the biological make-up of Earth’s seafloors, the causes of this event remain elusive. Here, we show that the onset of the major phase of biodiversification 470 Myr ago coincides with the disruption in the asteroid belt of the L-chondrite parent body—the largest documented asteroid breakup event during the past few billion years4,5. The precise coincidence between these two events is established by bed-by-bed records of extraterrestrial chromite, osmium isotopes and invertebrate fossils in Middle Ordovician strata in Baltoscandia and China. We argue that frequent impacts on Earth of kilometre-sized asteroids—supported by abundant Middle Ordovician fossil meteorites and impact craters6—accelerated the biodiversification process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global biodiversity change at family level through the early Palaeozoic era.
Figure 2: Distribution of extraterrestrial (chondritic) chromite and osmium isotopes through Middle Ordovician sections in Sweden and China.
Figure 3: Total diversity of brachiopod species (number of species) through part of the Lower and Middle Ordovician in Baltoscandia.

References

  1. Sepkoski, J. J. Jr. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).

    Article  Google Scholar 

  2. Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. (eds) The Great Ordovician Biodiversification Event (Columbia Univ. Press, New York, 2004).

  3. Harper, D. A. T. The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 148–166 (2006).

    Article  Google Scholar 

  4. Heymann, D. On the origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6, 189–221 (1967).

    Article  Google Scholar 

  5. Keil, K., Haack, H. & Scott, E. R. D. Catastrophic fragmentation of asteroids: Evidence from meteorites. Planet. Space Sci. 42, 1109–1122 (1994).

    Article  Google Scholar 

  6. Schmitz, B., Tassinari, M. & Peucker-Ehrenbrink, B. A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet. Sci. Lett. 194, 1–15 (2001).

    Article  Google Scholar 

  7. Bridges, J. C. et al. Petrographic classification of mid-Ordovician fossil meteorites from Sweden. Meteorit. Planet. Sci. (2007, in the press).

  8. Greenwood, R. C., Schmitz, B., Bridges, J., Hutchison, R. & Franchi, I. A. Disruption of the L chondrite parent body. New oxygen isotope evidence from Ordovician relict chromite grains. Earth Planet. Sci. Lett. 262, 204–213 (2007).

    Article  Google Scholar 

  9. Schmitz, B., Häggström, T. & Tassinari, M. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science 300, 961–964 (2003).

    Article  Google Scholar 

  10. Schmitz, B. & Häggström, T. Extraterrestrial chromite in Middle Ordovician marine limestone at Kinnekulle, southern Sweden—Traces of a major asteroid breakup event. Meteorit. Planet. Sci. 41, 455–466 (2006).

    Article  Google Scholar 

  11. Häggström, T. & Schmitz, B. Distribution of extraterrestrial chromite in Middle Ordovician Komstad Limestone in the Killeröd quarry, Scania, Sweden. Bull. Geol. Soc. Den. 55, 37–58 (2007).

    Google Scholar 

  12. Heck, P. R., Schmitz, B., Baur, H., Halliday, A. N. & Wieler, R. Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430, 323–325 (2004).

    Article  Google Scholar 

  13. Korochantseva, E. V. et al. L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteorit. Planet. Sci. 42, 113–130 (2007).

    Article  Google Scholar 

  14. Droser, M. L. & Sheehan, P. M. Palaeoecology of the Ordovician radiation; resolution of large-scale patterns with individual clade histories, palaeogeography and environments. Geobios 30 (suppl. 1), 221–229 (1997).

    Article  Google Scholar 

  15. Sepkoski, J. J. Jr. in Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (eds Cooper, J. D., Droser, M. L. & Finney, S. C.) (Pacific Section Society for Sedimentary Geology, Book 77, Fullerton, California, 1995).

    Google Scholar 

  16. Hammer, Ø. Biodiversity curves for the Ordovician of Baltoscandia. Lethaia 36, 305–314 (2003).

    Article  Google Scholar 

  17. Sweet, W. C. The Conodonta. Morphology, Taxonomy, Palaeoecology, and Evolutionary History of a Long-Extinct Animal Phylum (Clarendon, Oxford, 1988).

    Google Scholar 

  18. Peterson, K. J. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33, 929–932 (2005).

    Article  Google Scholar 

  19. Vecoli, M., Lehnert, O. & Servais, T. The role of marine microphytoplankton in the Ordovician Biodiversification Event. Notebooks Geol. Memoir 2005/02, 69–70 (2005).

    Google Scholar 

  20. Cronholm, A. & Schmitz, B. Extraterrestrial chromite in latest Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: The flux of unmelted ordinary chondrites. Meteorit. Planet. Sci. (in the press).

  21. Peucker-Ehrenbrink, B. & Ravizza, G. The marine osmium isotope record. Terra Nova 12, 205–219 (2000).

    Article  Google Scholar 

  22. Rasmussen, C. M. Ø., Hansen, J. & Harper, D. A. T. Baltica: A mid Ordovician diversity hotspot. Hist. Biol. 19, 255–261 (2007).

    Article  Google Scholar 

  23. Zappalà, V., Cellino, A., Gladman, B. J., Manley, S. & Migliorini, F. Asteroid showers on Earth after family breakup events. Icarus 134, 176–179 (1998).

    Article  Google Scholar 

  24. Nesvorny, D., Vokrouhlicky, D., Bottke, W. F., Gladman, B. & Häggström, T. Express delivery of fossil meteorites from the inner asteroid belt to Sweden. Icarus 188, 400–413 (2007).

    Article  Google Scholar 

  25. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  Google Scholar 

  26. Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    Article  Google Scholar 

  27. Alwmark, C. & Schmitz, B. Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden. Earth Planet. Sci. Lett. 253, 291–303 (2007).

    Article  Google Scholar 

  28. Zhang, J. Middle Ordovician Conodonts from the Atlantic Faunal Region and the Evolution of Key Conodont Genera. Thesis, Univ. Stockholm (1998).

  29. Bottke, W. F., Vokrouhlicky, D. & Nesvorny, D. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature 449, 48–53 (2007).

    Article  Google Scholar 

  30. Peucker-Ehrenbrink, B., Bach, W., Hart, S. R., Blusztajn, J. S. & Abbruzzese, T. Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP Sites 504 and 417/418. Geochem. Geophys. Geosyst. 4, 8911 (2003).

    Google Scholar 

Download references

Acknowledgements

This study was supported by financial support to B.S. from the National Geographic Society, Swedish Research Council (VR) and Crafoord Foundation and to D.A.T.H. from the Carlsberg Foundation. This is a contribution to International Geological Correlation Programme project 503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Schmitz.

Supplementary information

Supplementary Information

Supplementary tables 1 and 2 (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, B., Harper, D., Peucker-Ehrenbrink, B. et al. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geosci 1, 49–53 (2008). https://doi.org/10.1038/ngeo.2007.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo.2007.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing