Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A site–directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination

A Correction to this article was published on 01 January 1996

Abstract

We have developed a strategy for chromosome engineering in embryonic stem (ES) cells that relies on sequential gene targeting and Cre–loxP site–specific recombination. Gene targeting was first used to integrate loxP sites at the desired positions in the genome. Transient expression of Cre recombinase was then used to mediate the chromosomal rearrangement. A genetic selection relying on reconstruction of a selectable marker from sequences co–integrated with the loxP sites allowed detection of cells containing the Cre–mediated rearrangement. A programmed translocation between the c–myc and immunoglobulin heavy chain genes on chromosomes 15 and 12 was created by this method. This strategy will allow the design of a variety of chromosome rearrangements that can be selected and verified in ES cells or activated in ES cell–derived mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Capecchi, M. Altering the genome by homologous recombination. Science 244, 1288–12921 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Koller, B.H. & Smithies, O. Altering genes in animals by gene targeting. Annu. rev. Immunol. 10, 705–730 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Evans, M. Potential for genetic manipulation of mammals. Molec. biol. Med. 6, 557–665 (1989).

    CAS  PubMed  Google Scholar 

  4. Craig, N.C. The mechanism of site-specific recombination. Annu. Rev. Genet. 22, 77–105 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Stark, W.M., Boocock, M.R. & Sherratt, D.J. Catalysis by site-specific recombinases. Trends Genet. 8, 432–439 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Stemberg, N. & Hamilton, D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. molec. Biol. 150, 467–486 (1981).

    Article  Google Scholar 

  7. Yarmolinsky, M.B. & Sternberg, N., Bacteriophage P1. The Bacteriophages Vol.1, (Ed. Calender, R.) 291–438 (Plenum, 1988).

  8. Hoess, R.H. & Abremski, K. Interaction of bacteriophage P1 recombinase with the recombining site loxP. Proc. natn. Acad. Sci. U.S.A. 81, 1026–1029 (1984).

    Article  CAS  Google Scholar 

  9. Hoess, R. & Abremski, K. Mechanism of strand cleavage and exchange in the Cre-lox site specific recombination system. J. molec. Biol. 181, 351–362 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Hoess, R.H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer in P1 site-specific recombination. Nuc. Acids Res. 14, 2287–2300 (1986).

    Article  CAS  Google Scholar 

  11. Abremski, K., Hoess, R. & Sternberg, N. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32, 1301–1311 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Gage, P.J., Sauer, B., Levine, M. & Glorioso, J.C. A cell-free recombination system for site-specific integration of multlgenic shuttle plasmids into the herpes simplex virus type I genome. J. Virol. 66, 5509–5515 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Elledge, S.J., Mulligan, J.T., Ramer, S.W., Spotswood, M. & Davis, R.W. λYES: a functional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. natn. Acad. Sci. U.S.A. 88, 1731–1735 (1991).

    Article  CAS  Google Scholar 

  14. Sauer, B. Functional expression of the cre-loxP site-specific recombination system in the yeast Saccharomyces cerevisiae. Molec. cell. Biol. 7, 2087–2096 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dale, E.C. & Ow, D.W. Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91, 79–85 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Sauer, B. & Henderson, N. Site-specific recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. natn. Acad. Sci. U.S.A. 85, 5166–5170 (1991).

    Article  Google Scholar 

  17. Sauer, B. & Henderson, N. Cre-stimulated recombination at loxP sites placed into the genome of mammalian cells. Nucl. Acids Res. 17, 147–161 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biologist 2, 441–449 (1990).

    CAS  PubMed  Google Scholar 

  20. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Reid, L.H., Gregg, R.G., Smithies, O. & Koller, B.H. Regulatory elements in the introns of the human Hprt gene are necessary for its expression in embryonic stem cells. Proc. natn. Acad. Sci. U.S.A. 87, 4299–4303 (1990).

    Article  CAS  Google Scholar 

  22. Potter, M. & Wiener, F. Plasmacytomagenesis in mice: model of neoplastic development dependent upon chromosomal translocations. Carcinogenesis 13, 10 1681–1687 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Cory, S. Activation of cellular oncogenes in hematopoetic cells by chromosome translocation. Adv. Cancer Res. 47, 189–211 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene Int-2 in mouse embryo derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Rabbitts, P.H. et al. Chromosome-specific paints from a high resolution flow karyotype of the mouse. Nature Genet. 9, 369–375 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Rouyer, F., Simmler, M.-C., Page, D.C. & Wissenback, J.,A sex chromosome rearrangement In a human XX male caused by Alu-Alu recombination. Cell 51, 417–425 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Yen, P.H. et al. X/Y translocations resulting from recombination between homologous sequences on Xp and Yq. Proc. natn. Acad. Sci. U.S.A. 88, 8944–8948 (1990).

    Article  Google Scholar 

  28. Matsuzaki, H., Nakajima, R., Nishiyama, J., Araki, H. & Oshima, Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J. Bact. 172, 610–618 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Golic, K.G. Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Quin, M., Bayley, C., Stockton, T. & Ow, D.W. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. natn. Acad. Sci. U.S.A. 91, 1706–1710 (1994).

    Article  Google Scholar 

  31. Matsuzaki, H., Araki, H. & Oshima, Y. Gene conversion associated with site-specific recombination in yeast plasmid pSR1. Molec. cell. Biol. 8, 955–962 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cox, M. FLP site-specific recombination system of Saccharomyces cerevisiae. in Genetic Recombination (eds Kucherlapati, R. and Smith, G.R.) 429–433 (American Society for Microbiology, Washington, DC, 1988).

    Google Scholar 

  33. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Nehls, M., Messerie, M., Sirulnik, A., Smith, A.J.H. & Boehm, T. Two large Insert vectors, λPS and λKO facilitate rapid mapping and targeted disruption of mammalian genes. Biotechniques 17, 770–775 (1994).

    CAS  PubMed  Google Scholar 

  35. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 58, 313–321 (1987).

    Google Scholar 

  36. Yenofsky, R.L., Fine, M. & Pellow, J.W. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. natn. Acad. Sci. U.S.A. 87, 3435–3439 (1990).

    Article  CAS  Google Scholar 

  37. Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.K., Branson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c- abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. te Riele, H., Maandag, E.R., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., De Sousa, M., Kwabi-Addo, B. et al. A site–directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9, 376–385 (1995). https://doi.org/10.1038/ng0495-376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0495-376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing