Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity

Abstract

Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals. Case-derived dendritic cells exhibit an altered cytokine profile and are more potent than matched control cells in stimulating allogeneic T cell proliferation in mixed lymphocyte reactions. These findings shed new light on the role of osteopontin and its regulation by TRAP in the pathogenesis of common autoimmune disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pleiotropism of SPENCD.
Figure 2: Mutations in ACP5 and their effect on TRAP activity.
Figure 3: Osteopontin deregulation in SPENCD.
Figure 4: TRAP-deficient dendritic cells secrete Th1-polarizing cytokines and show enhanced T cell allostimulatory activity.
Figure 5: Variable serum cytokine patterns in individuals with SPENCD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Walker, B.S., Lemon, H.M., Davison, M.M. & Schwartz, M.K. Acid phosphatases: a review. Am. J. Clin. Pathol. 24, 807–837 (1954).

    Article  CAS  Google Scholar 

  2. Janckila, A.J. & Yam, L.T. Biology and clinical significance of tartrate-resistant acid phosphatases: new perspectives on an old enzyme. Calcif. Tissue Int. 85, 465–483 (2009).

    Article  CAS  Google Scholar 

  3. Oddie, G.W. et al. Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27, 575–584 (2000).

    Article  CAS  Google Scholar 

  4. Hayman, A.R. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41, 218–223 (2008).

    Article  CAS  Google Scholar 

  5. Hayman, A.R. et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122, 3151–3162 (1996).

    CAS  PubMed  Google Scholar 

  6. Bune, A.J., Hayman, A.R., Evans, M.J. & Cox, T.M. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102, 103–113 (2001).

    Article  CAS  Google Scholar 

  7. Esfandiari, E. et al. TRACP influences Th1 pathways by affecting dendritic cell function. J. Bone Miner. Res. 21, 1367–1376 (2006).

    Article  CAS  Google Scholar 

  8. Schorr, S., Legum, C. & Ochshorn, M. Spondyloenchondrodysplasia. Enchondromatosis with severe platyspondyly in two brothers. Radiology 118, 133–139 (1976).

    Article  CAS  Google Scholar 

  9. Menger, H., Kruse, K. & Spranger, J. Spondyloenchondrodysplasia. J. Med. Genet. 26, 93–99 (1989).

    Article  CAS  Google Scholar 

  10. Frydman, M. et al. Possible heterogeneity in spondyloenchondrodysplasia: quadriparesis, basal ganglia calcifications, and chondrocyte inclusions. Am. J. Med. Genet. 36, 279–284 (1990).

    Article  CAS  Google Scholar 

  11. Renella, R. et al. Spondyloenchondrodysplasia with spasticity, cerebral calcifications, and immune dysregulation: clinical and radiographic delineation of a pleiotropic disorder. Am. J. Med. Genet. A. 140, 541–550 (2006).

    Article  Google Scholar 

  12. Schaerer, K. Ueber einen Fall von kindlichem Lupus erythematodes generalisatus mit eigenartigen Knochenveraenderungen. Helv. Paediatr. Acta 13, 40–68 (1958).

    Google Scholar 

  13. Nakanishi, M., Yoh, K., Uchida, K., Maruo, S. & Matsuoka, A. Improved method for measuring tartrate-resistant acid phosphatase activity in serum. Clin. Chem. 44, 221–225 (1998).

    CAS  PubMed  Google Scholar 

  14. Halleen, J.M. et al. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J. Bone Miner. Res. 15, 1337–1345 (2000).

    Article  CAS  Google Scholar 

  15. Hayman, A.R., Macary, P., Lehner, P.J. & Cox, T.M. Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J. Histochem. Cytochem. 49, 675–684 (2001).

    Article  CAS  Google Scholar 

  16. Andersson, G. et al. TRACP as an osteopontin phosphatase. J. Bone Miner. Res. 18, 1912–1915 (2003).

    Article  CAS  Google Scholar 

  17. Ek-Rylander, B., Flores, M., Wendel, M., Heinegard, D. & Andersson, G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J. Biol. Chem. 269, 14853–14856 (1994).

    CAS  PubMed  Google Scholar 

  18. Suter, A. et al. Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128, 4899–4910 (2001).

    CAS  PubMed  Google Scholar 

  19. Kazanecki, C.C., Uzwiak, D.J. & Denhardt, D.T. Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J. Cell. Biochem. 102, 912–924 (2007).

    Article  CAS  Google Scholar 

  20. Senger, D.R., Perruzzi, C.A., Papadopoulos-Sergiou, A. & Van de Water, L. Adhesive properties of osteopontin: regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Mol. Biol. Cell 5, 565–574 (1994).

    Article  CAS  Google Scholar 

  21. Yokosaki, Y. et al. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J. Biol. Chem. 274, 36328–36334 (1999).

    Article  CAS  Google Scholar 

  22. Ashkar, S. et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860–864 (2000).

    Article  CAS  Google Scholar 

  23. Kawamura, K. et al. Differentiation, maturation, and survival of dendritic cells by osteopontin regulation. Clin. Diagn. Lab. Immunol. 12, 206–212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Burdo, T.H., Wood, M.R. & Fox, H.S. Osteopontin prevents monocyte recirculation and apoptosis. J. Leukoc. Biol. 81, 1504–1511 (2007).

    Article  CAS  Google Scholar 

  25. Shinohara, M.L., Kim, J.H., Garcia, V.A. & Cantor, H. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29, 68–78 (2008).

    Article  CAS  Google Scholar 

  26. Murugaiyan, G., Mittal, A. & Weiner, H.L. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J. Immunol. 181, 7480–7488 (2008).

    Article  CAS  Google Scholar 

  27. Cantor, H. & Shinohara, M.L. Regulation of T-helper-cell lineage development by osteopontin: the inside story. Nat. Rev. Immunol. 9, 137–141 (2009).

    Article  CAS  Google Scholar 

  28. Shinohara, M.L. et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat. Immunol. 7, 498–506 (2006).

    Article  CAS  Google Scholar 

  29. Sun, P. et al. Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc. Natl. Acad. Sci. USA 105, 16590–16595 (2008).

    Article  CAS  Google Scholar 

  30. Räisänen, S.R., Halleen, J., Parikka, V. & Vaananen, H.K. Tartrate-resistant acid phosphatase facilitates hydroxyl radical formation and colocalizes with phagocytosed Staphylococcus aureus in alveolar macrophages. Biochem. Biophys. Res. Commun. 288, 142–150 (2001).

    Article  Google Scholar 

  31. Raisanen, S.R. et al. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem. Biophys. Res. Commun. 331, 120–126 (2005).

    Article  Google Scholar 

  32. Kaija, H. et al. Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. Biochem. Biophys. Res. Commun. 292, 128–132 (2002).

    Article  CAS  Google Scholar 

  33. Weber, G.F. et al. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J. Leukoc. Biol. 72, 752–761 (2002).

    CAS  PubMed  Google Scholar 

  34. Steinman, L. A molecular trio in relapse and remission in multiple sclerosis. Nat. Rev. Immunol. 9, 440–447 (2009).

    Article  CAS  Google Scholar 

  35. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    Article  CAS  Google Scholar 

  36. Iizuka, J. et al. Introduction of an osteopontin gene confers the increase in B1 cell population and the production of anti-DNA autoantibodies. Lab. Invest. 78, 1523–1533 (1998).

    CAS  PubMed  Google Scholar 

  37. Wong, C.K., Lit, L.C., Tam, L.S., Li, E.K. & Lam, C.W. Elevation of plasma osteopontin concentration is correlated with disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44, 602–606 (2005).

    Article  CAS  Google Scholar 

  38. Stromnes, I.M. & Goverman, J.M. Osteopontin-induced survival of T cells. Nat. Immunol. 8, 19–20 (2007).

    Article  CAS  Google Scholar 

  39. Renkl, A.C. et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood 106, 946–955 (2005).

    Article  CAS  Google Scholar 

  40. Hur, E.M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol. 8, 74–83 (2007).

    Article  CAS  Google Scholar 

  41. Vogt, M.H., Lopatinskaya, L., Smits, M., Polman, C.H. & Nagelkerken, L. Elevated osteopontin levels in active relapsing-remitting multiple sclerosis. Ann. Neurol. 53, 819–822 (2003).

    Article  CAS  Google Scholar 

  42. D'Alfonso, S. et al. Two single-nucleotide polymorphisms in the 5′ and 3′ ends of the osteopontin gene contribute to susceptibility to systemic lupus erythematosus. Arthritis Rheum. 52, 539–547 (2005).

    Article  CAS  Google Scholar 

  43. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  Google Scholar 

  44. Gudbjartsson, D.F., Thorvaldsson, T., Kong, A., Gunnarsson, G. & Ingolfsdottir, A. Allegro version 2. Nat. Genet. 37, 1015–1016 (2005).

    Article  CAS  Google Scholar 

  45. Sträter, N. et al. Crystal structures of recombinant human purple Acid phosphatase with and without an inhibitory conformation of the repression loop. J. Mol. Biol. 351, 233–246 (2005).

    Article  Google Scholar 

  46. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).

    Article  Google Scholar 

  47. Hayman, A.R., Warburton, M.J., Pringle, J.A., Coles, B. & Chambers, T.J. Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem. J. 261, 601–609 (1989).

    Article  CAS  Google Scholar 

  48. Lausch, E. et al. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am. J. Hum. Genet. 85, 168–178 (2009).

    Article  CAS  Google Scholar 

  49. Rosenthal, A.K., Gohr, C.M., Uzuki, M. & Masuda, I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol. 26, 96–105 (2007).

    Article  CAS  Google Scholar 

  50. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our cases and their families for participation in this study. We are also grateful to T. Velten and to the Lausch/Zabel lab for excellent technical assistance and to M. Osawa and H. Katumori, Tokyo, for clinical information. S. Ehl and his group at the Centre for Chronic Immunodeficiency in Freiburg were most helpful in discussing immunological aspects and experimental strategies. This work was made possible by continuous grant support from the Deutsche Forschungsgemeinschaft to E.L. and B.Z. (La 1381/1-3). B.Z. is also supported by the German Bundesministerium für Bildung und Forschung (SKELNET project), and A.S.-F. is supported by the Leenaards Foundation (Lausanne, Switzerland). The paper is dedicated to Céline and Sinai.

Author information

Authors and Affiliations

Authors

Contributions

E.L. and A.S.-F. conceived and initiated the project and E.L. designed functional studies. B.Z., A.S.-F. and E.L. secured financial support. Y.A., C.D.L., C.A.H., P.M., G.N., M.M., Y.H., S. Tenoutasse, A.K., R.F.M.R., S.L.U., R.R., L.B., J.S., B.Z., E.L. and A.S.-F. identified cases of SPENCD, provided clinical information and collected biologic materials. S.U., R.R., J.S., E.L. and A.S.-F. assessed the clinical and radiographic data for inclusion in the study. A.S.-F., E.L. and A.J. performed linkage and mutation analysis. E.L. performed biochemical analyses and statistical evaluation. E.L., M.B. and S. Trojandt performed the expression studies as well as the functional and immunological studies with dendritic cells. B.Z., S.U. and R.R. discussed the ongoing experiments with E.L. and A.S.-F. Finally, E.L., S.U., B.Z. and A.S.-F. wrote the manuscript.

Corresponding author

Correspondence to Andrea Superti-Furga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Table 1 and Supplementary Figures 1–3 (PDF 549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lausch, E., Janecke, A., Bros, M. et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43, 132–137 (2011). https://doi.org/10.1038/ng.749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing