Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis

Abstract

Double fertilization of the egg cell and the central cell by one sperm cell each produces the diploid embryo and the typically triploid endosperm and is one of the defining characteristics of flowering plants (angiosperms). Endosperm and embryo develop in parallel to form the mature seed, but little is known about the coordination between these two organisms. We characterized a mutation of the Arabidopsis thaliana Cdc2 homolog CDC2A (also called CDKA;1), which has a paternal effect. In cdc2a mutant pollen, only one sperm cell, instead of two, is produced. Mutant pollen is viable but can fertilize only one cell in the embryo sac, allowing for a genetic dissection of the double fertilization process. We observed exclusive fertilization of the egg cell by cdc2a sperm cells. Moreover, we found that unfertilized endosperm developed, suggesting that a previously unrecognized positive signal from the fertilization of the egg cell initiates proliferation of the central cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-DNA insertion mutations of the A. thaliana gene CDC2A.
Figure 2: Phenotype of cdc2a pollen.
Figure 3: Embryo sac development in plants fertilized with cdc2a pollen.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Drews, G.N. & Yadegari, R. Development and function of the angiosperm female gametophyte. Annu. Rev. Genet. 36, 99–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. McCormick, S. Control of male gametophyte development. Plant Cell 16 Suppl, S142–S153 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferreira, P.C., Hemerly, A.S., Villarroel, R., Van Montagu, M. & Inze, D. The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3, 531–540 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hirayama, T., Imajuku, Y., Anai, T., Matsui, M. & Oka, A. Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene 105, 159–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Vandepoele, K. et al. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14, 903–916 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hemerly, A. et al. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J. 14, 3925–3936 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hemerly, A.S., Ferreira, P.C., Van Montagu, M., Engler, G. & Inze, D. Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant J. 23, 123–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Leiva-Neto, J.T. et al. A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16, 1854–1869 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedman, W.E. Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126, 1065–1075 (1999).

    CAS  PubMed  Google Scholar 

  10. Rotman, N. et al. A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15, 244–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Guitton, A.E. et al. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971–2981 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Vinkenoog, R. et al. Genomic imprinting and endosperm development in flowering plants. Mol. Biotechnol. 25, 149–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Ebel, C., Mariconti, L. & Gruissem, W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429, 776–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Berger, F. Endosperm: the crossroad of seed development. Curr. Opin. Plant Biol. 6, 42–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Grossniklaus, U., Spillane, C., Page, D.R. & Kohler, C. Genomic imprinting and seed development: endosperm formation with and without sex. Curr. Opin. Plant Biol. 4, 21–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhury, A.M. et al. Control of early seed development. Annu. Rev. Cell Dev. Biol. 17, 677–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh, T.F., Hakim, O., Ohad, N. & Fischer, R.L. From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci. 8, 439–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhury, A.M. et al. Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 4223–4228 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morgan, D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Rios, G. et al. Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J. 32, 243–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Grini, P.E., Jurgens, G. & Hulskamp, M. Embryo and endosperm development is disrupted in the female gametophytic capulet mutants of Arabidopsis. Genetics 162, 1911–1925 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sessions, A., Weigel, D. & Yanofsky, M.F. The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Dissmeyer, M. Heese, G. Jürgens, M. Lenhard and R. O'Connell for critical reading and comments on the manuscript; H. Hillebrand for help with the statistical analysis; A. Chaudhury for the homozygous fis1 mutant line; the Salk Institute Genomic Analysis Laboratory for providing the sequence-indexed A. thaliana T-DNA insertion mutants; and the Arabidopsis Biological Resource Center for providing seeds and BACs. M.K.N. is a fellow of the International Max-Planck-Research School. P.E.G. was supported by the Norwegian Research Council and the Norwegian Arabidopsis Research Centre, a part of the Norwegian Research Council National Programme for Research in Functional Genomics. This work was supported by a grant of the Volkswagen-Stiftung to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arp Schnittger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

cdka;1-1 is a null allele. (PDF 682 kb)

Supplementary Fig. 2

Viability and in vitro germination ability of cdka;1 mutant pollen. (PDF 847 kb)

Supplementary Table 1

Transmission of the cdka;1-1 allele. (PDF 103 kb)

Supplementary Table 2

Endosperm development of Col-0 X cdka1-1+/− plants carrying proCDKA;1:GUS fertilization marker. (PDF 102 kb)

Supplementary Table 3

Primer sequences and binding sites. (PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowack, M., Grini, P., Jakoby, M. et al. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38, 63–67 (2006). https://doi.org/10.1038/ng1694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing