Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic similarity and quality interact in mate choice decisions by female mice

Abstract

Females express mate preferences for genetically dissimilar males1, especially with respect to the major histocompatibility complex, MHC2,3, and for males whose sexually selected signals indicate high genetic quality4,5. The balance of selection pressure on each trait will depend on how females weight these desirable qualities under different conditions6, but this has not been tested empirically. Here we show in mice that although MHC dissimilarity and a 'good genes' indicator (investment in scent-marking) both have a role in determining female preference, their relative influence can vary depending on the degree of variability in each trait among available males. Such interactions between condition-dependent and disassortative mate choice criteria suggest a mechanism by which female choice can contribute to maintenance of additive genetic variance in both the MHC and condition-dependent traits, even under consistent directional selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scent-marking rates (mean ± s.e.) of males from five MHC-congenic B10 mouse strains.

Similar content being viewed by others

References

  1. Isles, A.R., Baum, M.J., Ma, D., Keverne, E.B. & Allen, N.D. Urinary odour preferences in mice. Nature 409, 783–784 (2001).

    Article  CAS  Google Scholar 

  2. Yamazaki, K. et al. Familial imprinting determines H-2 selective mating preferences. Science 240, 1331–1332 (1988).

    Article  CAS  Google Scholar 

  3. Potts, W.K., Manning, C.J. & Wakeland, E.K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352, 619–621 (1991).

    Article  CAS  Google Scholar 

  4. Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371, 598–599 (1994).

    Article  CAS  Google Scholar 

  5. Hasselquist, D., Bensch, S. & von Schantz, T. Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature 381, 229–232 (1996).

    Article  CAS  Google Scholar 

  6. Colegrave, N., Kotiaho, J.S. & Tomkins, J.L. Mate choice or polyandry: reconciling genetic compatibility and good genes sexual selection. Evol. Ecol. Res. 4, 911–917 (2002).

    Google Scholar 

  7. Brown, J.L. & Eklund, A. Kin recognition and the major histocompatibility complex: an integrative review. Amer. Nat. 143, 435–461 (1994).

    Article  Google Scholar 

  8. Penn, D.J. & Potts, W.K. The evolution of mating preferences and major histocompatibility genes. Amer. Nat. 153, 145–164 (1999).

    Article  Google Scholar 

  9. Penn, D.J., Damjanovich, K. & Potts, W.K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 99, 11260–11264 (2002).

    Article  CAS  Google Scholar 

  10. Yamaguchi, M. et al. Distinctive urinary odors governed by the major histocompatibility locus of the mouse. Proc. Natl. Acad. Sci. USA 78, 5817–5820 (1981).

    Article  CAS  Google Scholar 

  11. Gosling, L.M. & Roberts, S.C. Scent-marking by male mammals: cheat-proof signals to competitors and mates. Adv. Stud. Behav. 30, 169–217 (2001).

    Article  Google Scholar 

  12. Novotny, M., Harvey, S. & Jemiolo, B. Chemistry of male dominance in the house mouse, Mus domesticus. Experientia 46, 109–113 (1990).

    Article  CAS  Google Scholar 

  13. Gosling, L.M., Roberts, S.C., Thornton, E.A. & Andrew, M.J. Life history costs of olfactory status signalling in mice. Behav. Ecol. Sociobiol. 48, 328–332 (2000).

    Article  Google Scholar 

  14. Desjardins, C., Maruniak, J.A. & Bronson, F.H. Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182, 939–941 (1973).

    Article  CAS  Google Scholar 

  15. Zahavi, A. Mate selection: a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    Article  CAS  Google Scholar 

  16. Hayashi, S. Social condition influences sexual attractiveness of dominant male mice. Zool. Science 7, 889–894 (1990).

    Google Scholar 

  17. Mossman, C.A. & Drickamer, L.C. Odor preferences of female house mice (Mus domesticus) in seminatural enclosures. J. Comp. Psychol. 110, 131–138 (1996).

    Article  CAS  Google Scholar 

  18. Rich, T.J. & Hurst, J.L. Scent marks as reliable signals of the competitive ability of mates. Anim. Behav. 56, 727–735 (1998).

    Article  CAS  Google Scholar 

  19. Horne, T.J. & Ylonen, H. Heritabilities of dominance-related traits in male bank voles (Clethrionomys glareolus). Evolution 52, 894–899 (1998).

    PubMed  Google Scholar 

  20. Drickamer, L.C. Estrous female house mice discriminate dominant from subordinate males and sons of dominant from sons of subordinate males by odour cues. Anim. Behav. 43, 868–870 (1992).

    Article  Google Scholar 

  21. von Schantz, T., Wittzell, H., Goransson, G. & Grahn, M. Mate choice, male condition-dependent ornamentation and MHC in the pheasant. Hereditas 127, 133–140 (1997).

    Article  Google Scholar 

  22. Eggert, F., Höller, C., Luszyk, D., Müller-Rucholtz, W. & Ferstl, R. MHC-associated and MHC-independent urinary chemosignals in mice. Physiol. Behav. 59, 57–62 (1996).

    Article  CAS  Google Scholar 

  23. Yamazaki, K. et al. Control of mating preferences in mice by genes in the major histocompatability complex. J. Exp. Med. 144, 1324–1335 (1976).

    Article  CAS  Google Scholar 

  24. Jordan, W.C. & Bruford, M.W. New perspectives on mate choice and the MHC. Heredity 81, 239–245 (1998).

    Article  CAS  Google Scholar 

  25. Wedekind, C., Seebeck, T., Bettens, F. & Paepke, A.J. MHC-dependent mate preferences in humans. Proc. R. Soc. Lond. B 260, 245–249 (1995).

    Article  CAS  Google Scholar 

  26. Edwards, S.V. & Hedrick, P.W. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol. Evol. 13, 305–311 (1998).

    Article  CAS  Google Scholar 

  27. Potts, W.K. & Wakeland, E.K. Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet. 9, 408–412 (1993).

    Article  CAS  Google Scholar 

  28. Potts, W.K. & Slev, P.R. Pathogen-based models favoring MHC genetic diversity. Immunol. Rev. 143, 181–197 (1995).

    Article  CAS  Google Scholar 

  29. Pomiankowski, A. & Møller, A.P. A resolution of the lek paradox. Proc. R. Soc. Lond. B 260, 21–29 (1995).

    Article  Google Scholar 

  30. Kotiaho, J.S., Simmons, L.W. & Tomkins, J.L. Towards a resolution of the lek paradox. Nature 410, 684–686 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bateson, F. Gilbert, M. Hale, W. Jordan, J. Kotiaho, M. Petrie and C. Rowe for their comments. The work was funded by the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Craig Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, S., Gosling, L. Genetic similarity and quality interact in mate choice decisions by female mice. Nat Genet 35, 103–106 (2003). https://doi.org/10.1038/ng1231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing