Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue-specific nuclear architecture and gene expession regulated by SATB1

Abstract

Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a cage-like network structure of SATB1 in thymocytes.
Figure 2: SATB1 actively anchors the Myc upstream sequence onto its network.
Figure 3: SATB1 regulates Myc in thymocytes.
Figure 4: Isolation and characterization of individual genomic sequences that bind to SATB1 in vivo in mouse thymocytes.
Figure 5: SATB1 regulates expression of distant genes.
Figure 6: SATB1 creates a chromatin domain marked by specific histone modification.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Roth, S.Y., Denu, J.M. & Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Varga-Weisz, P. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20, 3076–3085 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kingston, R.E. & Narlikar, G.J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Fry, C.J. & Peterson, C.L. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11, R185–R197 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Chan, H.M. & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001).

    CAS  PubMed  Google Scholar 

  8. Bulger, M., Sawado, T., Schubeler, D. & Groudine, M. ChIPs of the β-globin locus: unraveling gene regulation within an active domain. Curr. Opin. Genet. Dev. 12, 170–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Schubeler, D. et al. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev. 14, 940–950 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Litt, M.D., Simpson, M., Recillas-Targa, F., Prioleau, M.N. & Felsenfeld, G. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20, 2224–2235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Francastel, C., Schubeler, D., Martin, D.I. & Groudine, M. Nuclear compartmentalization and gene activity. Nat. Rev. Mol. Cell Biol. 1, 137–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Dickinson, L.A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631–645 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Kohwi-Shigematsu, T. & Kohwi, Y. Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry 29, 9551–9560 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Bode, J. et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255, 195–197 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Cockerill, P.N., Yuen, M.H. & Garrard, W.T. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem. 262, 5394–5397 (1987).

    CAS  PubMed  Google Scholar 

  18. Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 265, 1221–1225 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Jenuwein, T. et al. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385, 269–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. B cell-specific demethylation: a novel role for the intronic kappa chain enhancer sequence. Cell 76, 913–923 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Kirillov, A. et al. A role for nuclear NFκB in B-cell-specific demethylation of the Igκ locus. Nat. Genet. 13, 435–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez, L.A., Winkler, M. & Grosschedl, R. Matrix attachment region–dependent function of the immunoglobulin mu enhancer involves histone acetylation at a distance without changes in enhancer occupancy. Mol. Cell. Biol. 21, 196–208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakagomi, K., Kohwi, Y., Dickinson, L.A. & Kohwi-Shigematsu, T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol. Cell. Biol. 14, 1852–1860 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dickinson, L.A., Dickinson, C.D. & Kohwi-Shigematsu, T. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J. Biol. Chem. 272, 11463–11470 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Galande, S., Dickinson, L.A., Mian, I.S., Sikorska, M. & Kohwi-Shigematsu, T. SATB1 cleavage by caspase 6 disrupts PDZ domain–mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol. 21, 5591–5604 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hawkins, S.M., Kohwi-Shigematsu, T. & Skalnik, D.G. The matrix attachment region–binding protein SATB1 interacts with multiple elements within the gp91phox promoter and is down-regulated during myeloid differentiation. J. Biol. Chem. 276, 44472–44480 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez, J.D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dickinson, L.A. & Kohwi-Shigematsu, T. Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol. Cell. Biol. 15, 456–465 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galande, S. & Kohwi-Shigematsu, T. Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J. Biol. Chem. 274, 20521–20528 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, W.M., Guerra-Vladusic, F.K., Kurakata, S., Lupu, R. & Kohwi-Shigematsu, T. HMG-I(Y) recognizes base-unpairing regions of matrix attachment sequences and its increased expression is directly linked to metastatic breast cancer phenotype. Cancer Res. 59, 5695–5703 (1999).

    CAS  PubMed  Google Scholar 

  31. Herrscher, R.F. et al. The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev. 9, 3067–3082 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. de Belle, I., Cai, S. & Kohwi-Shigematsu, T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J. Cell Biol. 141, 335–348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kohwi-Shigematsu, T. & Kohwi, Y. Detection of non-B-DNA structures at specific sites in supercoiled plasmid DNA and chromatin with haloacetaldehyde and diethyl pyrocarbonate. Methods Enzymol. 212, 155–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Kohwi-Shigematsu, T., deBelle, I., Dickinson, L.A., Galande, S. & Kohwi, Y. Identification of base-unpairing region-binding proteins and characterization of their in vivo binding sequences. Methods Cell Biol. 53, 323–354 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Cai, S. & Kohwi-Shigematsu, T. Intranuclear relocalization of matrix binding sites during T cell activation detected by amplified fluorescence in situ hybridization. Methods 19, 394–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Riegel, J.S., Richie, E.R. & Allison, J.P. Nuclear events after activation of CD4+8+ thymocytes. J. Immunol. 144, 3611–3618 (1990).

    CAS  PubMed  Google Scholar 

  38. Eisenman, R.N. Deconstructing myc. Genes Dev. 15, 2023–2030 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Douglas, N.C., Jacobs, H., Bothwell, A.L. & Hayday, A.C. Defining the specific physiological requirements for c-Myc in T cell development. Nat. Immunol. 2, 307–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Sanders, J., Maassen, J.A. & Moller, W. Elongation factor-1 messenger-RNA levels in cultured cells are high compared to tissue and are not drastically affected further by oncogenic transformation. Nucleic Acids Res. 20, 5907–5910 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kohwi-Shigematsu, T., Maass, K. & Bode, J. A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36, 12005–12010 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, J. et al. The matrix attachment region–binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol. Cell. Biol. 17, 5275–5287 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bell, A.C., West, A.G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Gerasimova, T.I., Byrd, K. & Corces, V.G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Duncan, R. et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 8, 465–480 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. He, L. et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 19, 1034–1044 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kohwi, Y. & Panchenko, Y. Transcription-dependent recombination induced by triple-helix formation. Genes Dev. 7, 1766–1778 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wreggett, K.A. et al. A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet. Cell Genet. 66, 99–103 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Dernburg for help in obtaining the DeltaVision image, P. Varga-Weisz for valuable discussion and J.-F. Cheng and M. Kohwi for critically reading the manuscript. This work was supported by US National Institutes of Health grants to T.K.-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terumi Kohwi-Shigematsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, S., Han, HJ. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expession regulated by SATB1. Nat Genet 34, 42–51 (2003). https://doi.org/10.1038/ng1146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing