Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patterning the zebrafish axial skeleton requires early chordin function

Abstract

Members of the bone morphogenetic protein (BMP) family actively promote ventral cell fates, such as epidermis and blood, in the vertebrate gastrula. More dorsally, the organizer region counteracts BMP signalling through secretion of BMP-binding antagonists chordin and noggin, allowing dorsally derived tissues such as neurectoderm and somitic muscle to develop1. BMPs also function in skeletal development and regeneration of bone following injury2. Noggin antagonism is thought to prevent osteogenesis at sites of joint formation3, whereas chordin has not yet been implicated in skeletogenesis. Analyses of zebrafish mutants have confirmed the action of chordin (chd) in opposing ventralizing signals at gastrulation4,5,6. Some ventralized mutants recover and develop into fertile adults, thereby revealing a requirement for chd function for the later processes of fin and caudal skeletal patterning. We observe in mutants the misexpression of genes encoding BMPs and putative downstream genes, and ectopic sclerotomal cells. Through injections of chd mRNA into the early embryo, we restored wild-type gene expression patterns, and the resultant fish, although genotypically mutant, developed normal axial skeletons and fins. Our results demonstrate that chordin function during gastrulation is important for the correct morphogenesis of the adult zebrafish skeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutant alleles of zebrafish chd.
Figure 2: Fin and skeletal defects of dintt250 homozygous mutants.
Figure 3: Skeletal defects of dintt250 mutants are corrected by mRNA injection.
Figure 4: Gene expression and skeletal abnormalities in ogotm305 mutants.

Similar content being viewed by others

References

  1. Thomsen, G.H. Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet. 13, 209– 211 (1997).

    Article  CAS  Google Scholar 

  2. Hogan, B.L.M. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594 (1996).

    Article  CAS  Google Scholar 

  3. Brunet, L.J., McMahon, J.A., McMahon, A.P. & Harland, R.M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457 (1998).

    Article  CAS  Google Scholar 

  4. Hammerschmidt, M. et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95–102 (1996).

    CAS  PubMed  Google Scholar 

  5. Schulte-Merker, S., Lee, K.J., McMahon, A.P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    Article  CAS  Google Scholar 

  6. Fisher, S., Amacher, S.L. & Halpern, M.E. Loss of cerebum function ventralizes the zebrafish embryo. Development 124, 1301– 1311 (1997).

    CAS  PubMed  Google Scholar 

  7. Solnica-Krezel, L. et al. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123, 67–80 (1996).

    CAS  PubMed  Google Scholar 

  8. Postlethwait, J.H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).

    Article  CAS  Google Scholar 

  9. Hammerschmidt, M., Serbedzija, G. & McMahon, A.P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a Bmp4-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452– 2461 (1996).

    Article  CAS  Google Scholar 

  10. Jabs, E.W. et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75, 443–450 ( 1993).

    Article  CAS  Google Scholar 

  11. Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet. 6, 348–356 ( 1994).

    Article  CAS  Google Scholar 

  12. Winograd, J. et al. Perinatal lethality and multiple craniofacial malformations in MSX2 transgenic mice. Hum. Mol. Genet. 6, 369–379 (1997).

    Article  CAS  Google Scholar 

  13. Akimenko, M.A., Johnson, S.L., Westerfield, M. & Ekker, M. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347–357 (1995).

    CAS  PubMed  Google Scholar 

  14. Maeda, R. et al. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo. Development 124, 2553–2560 (1997).

    CAS  PubMed  Google Scholar 

  15. Marazzi, G., Wang, Y. & Sassoon, D. Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Dev. Biol. 186, 127–138 (1997).

    Article  CAS  Google Scholar 

  16. Suzuki, A., Ueno, N. & Hemmati-Brivanlou, A. Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037 –3044 (1997).

    CAS  PubMed  Google Scholar 

  17. Monsoro-Burq, A.H. et al. The role of bone morphogenetic proteins in vertebral development. Development 122, 3607– 3616 (1996).

    CAS  PubMed  Google Scholar 

  18. Nornes, S. et al. Zebrafish Pax9 encodes two proteins with distinct C-terminal transactivating domains of different potency negatively regulated by adjacent N-terminal sequences. J. Biol. Chem. 271, 26914–26923 (1996).

    Article  CAS  Google Scholar 

  19. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407– 413 (1996).

    Article  CAS  Google Scholar 

  20. Teillet, M.-A. et al. Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 125, 2019–2030 (1998).

    CAS  PubMed  Google Scholar 

  21. Miller-Bertoglio, V., Fisher, S., Sánchez, A., Mullins, M. & Halpern, M.E. Differential regulation of chordin expression in zebrafish mutants. Dev. Biol. 192, 537–550 (1997).

    Article  CAS  Google Scholar 

  22. Marques, G. et al. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91, 417–426 (1997).

    Article  CAS  Google Scholar 

  23. Piccolo, S. et al. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  Google Scholar 

  24. Ashe, H.L. & Levine, M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398, 427–431 (1999).

    Article  CAS  Google Scholar 

  25. Connors, S.A., Trout, J., Ekker, M. & Mullins, M.C. The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 126, 3119– 3130 (1999).

    CAS  PubMed  Google Scholar 

  26. Miller-Bertoglio, V. et al. Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev. Biol. 214, 72–86 (1999).

    Article  CAS  Google Scholar 

  27. Westerfield, M. The Zebrafish Book (University of Oregon Press, Eugene, Oregon, 1995).

    Google Scholar 

  28. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253– 310 (1995).

    Article  CAS  Google Scholar 

  29. Joly, J.S., Joly, C., Schulte-Merker, S., Boulekbache, H. & Condamine, H. The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119, 1261– 1275 (1993).

    CAS  PubMed  Google Scholar 

  30. Chen, J.N. et al. Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373–4382 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues, especially D. Brown and V. Miller-Bertoglio, for useful discussions and critical reading of the manuscript; P. Jagadeeswaran for guidance in radiographic techniques; E. Melancon and J. Eisen for helpful discussions on skeletal development; E. Mountcastle-Shah, W. Driever, E. Egan, W. Talbot, D. Wagner and M. Mullins for sharing information with us before publication; and M. Macurak, A. Hennessy and S.-J. Kim for technical assistance. This work was supported by a Clinical Investigator Development Award from NINDS to S.F. (NS01851-02) and a Pew Scholar Award to M.E.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, S., Halpern, M. Patterning the zebrafish axial skeleton requires early chordin function. Nat Genet 23, 442–446 (1999). https://doi.org/10.1038/70557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing