Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Assignment of Tangier disease to chromosome 9q31 by a graphical linkage exclusion strategy

An Erratum to this article was published on 01 November 1998

Abstract

A low level of high density lipoprotein (HDL) cholesterol is a strong predictor of ischaemic heart disease (IHD) and myocardial infarction1,2,3. One cause of low HDL-cholesterol is Tangier disease (TD), an autosomal codominant inherited condition first described in 1961 in two siblings on Tangier Island in the United States of America4. Apart from low HDL-cholesterol levels and an increased incidence of atherosclerosis5, TD is characterized by reduced total cholesterol, raised triglycerides, peripheral neuropathy and accumulation of cholesteryl esters in macrophages, which causes enlargement of the liver, spleen and tonsils4,6. In contrast to two other monogenic HDL deficiencies in which defects in the plasma proteins apoA-I and LCAT interfere primarily with the formation of HDL (refs 7, 8, 9, 10), TD shows a defect in cell signalling and the mobilization of cellular lipids11,12,13,14. The genetic defect in TD is unknown, and identification of the Tangier gene will contribute to the understanding of this intracellular pathway and of HDL metabolism and its link with IHD. We report here the localization of the genetic defect in TD to chromosome 9q31, using a genome-wide graphical linkage exclusion strategy in one pedigree, complemented by classical lod score calculations at this region in a total of three pedigrees (combined lod 10.05 at D9S1784). We also provide evidence that TD may be due to a loss-of-function defect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigree of a large family with TD showing branches A and E, which were analysed in the present study.
Figure 2: Traffic-light evaluation of results.
Figure 3: Pedigrees of additional families with TD that were examined for cosegregation of the low-HDL phenotype with markers on chromosome 9q31.

Similar content being viewed by others

References

  1. Miller, N.E., Thelle, D.S., Forde, O.H. & Mjos, O.D. The Tromsö heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1, 965–968 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Gordon, T., Kannel, W.B., Castelli, W.P. & Dawber, T.R. Lipoproteins, cardiovascular disease, and death. The Framingham study. Arch. Intern. Med. 141, 1128–1131 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Assmann, G. & Schulte, H. PROCAM-trial. (Panscientia Verlag, Hedingen, Zürich, 1986).

    Google Scholar 

  4. Fredrickson, D.S., Altrocchi, P.H., Avioli, L.V., Goodman, D.S. & Goodman, H.C. Tangier disease: Combined clinical staff conference at the National Institute of Health. Ann. Intern. Med. 55, 1016–1031 (1961).

    Article  Google Scholar 

  5. Serfaty-Lacrosniere, C. et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 107, 85–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Assmann, G., von-Eckardstein, A. & Brewer, H.B. Jr. Familial high density lipoprotein deficiency: Tangier Disease. in The Metabolic and Molecular Basis of Inheritied Disease. (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 2053–2072 (McGraw-Hill, New York, 1995).

    Google Scholar 

  7. Karathanasis, S.K., Ferris, E. & Haddad, I.A. DNA inversion within the apolipoproteins AI/CIII/AIV-encoding gene cluster of certain patients with premature atherosclerosis. Proc. Natl Acad. Sci. USA 84, 7198–7202 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Funke, H. et al. A frameshift mutation in the human apolipoprotein A-I gene causes high density lipoprotein deficiency, partial lecithin: cholesterol-acyltransferase deficiency, and corneal opacities. J. Clin. Invest. 87, 371–376 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Funke, H. et al. A molecular defect causing fish eye disease: an amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of alpha-LCAT activity. Proc. Natl Acad. Sci. USA 88, 4855–4859 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Funke, H. et al. Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease. J. Clin. Invest. 91, 677–683 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walter, M., Gerdes, U., Seedorf, U. & Assmann, G. The high density lipoprotein- and apolipoprotein A-I-induced mobilization of cellular cholesterol is impaired in fibroblasts from Tangier disease subjects. Biochem. Biophys. Res. Commun. 205, 850–856 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Francis, G.A., Knopp, R.H. & Oram, J.F. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease. J. Clin. Invest. 96, 78–87 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rogler, G., Trumbach, B., Klima, B., Lackner, K.J. & Schmitz, G. HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. Arterioscler. Thromb. Vasc. Biol. 15, 683–690 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Walter, M. et al. Defective regulation of phosphatidylcholine-specific phospholipases C and D in a kindred with Tangier disease. Evidence for the involvement of phosphatidylcholine breakdown in HDL-mediated cholesterol efflux mechanisms. J. Clin. Invest. 98, 2315–2323 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Assmann, G., Simantke, O., Schaefer, H.-E. & Smootz, E. Characterization of high density lipoproteins in patients heterozygous for Tangier disease. J. Clin. Invest. 60, 1025–1035 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Puffenberger, E.G. et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum. Mol. Genet. 3, 1217–1225 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Houwen, R.H.J. et al. Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nature Genet. 8, 380–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Nikali, K. et al. Random search for shared chromosomal regions in four affected individuals: the assignment of a new hereditary ataxia locus. Am. J. Hum. Genet. 56, 1088–1095 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Risch, N. A note on multiple testing procedures in linkage analysis. Am. J. Hum. Genet. 48, 1058–1064 (1995).

    Google Scholar 

  21. Kroes, H.Y., Tuerlings, J.H.A.M., Hordijk, R., Folkers, N.R.P. & ten Kate, L.P. Another patient with an interstitial deletion of chromosome 9: case report and a review of six cases with del(9)(q22q32). J. Med. Genet. 31, 156–158 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cottingham, R.W., Jr., Idury, R.M. & Schaffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  25. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and their family members for their cooperation. This project was sponsored in part by a grant from Interdisziplinäres Klinisches Forschungszentrum der Universität Münster to H.F. (project grant A5). We thank M. Farrall, for critical reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Rust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rust, S., Walter, M., Funke, H. et al. Assignment of Tangier disease to chromosome 9q31 by a graphical linkage exclusion strategy. Nat Genet 20, 96–98 (1998). https://doi.org/10.1038/1770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing