Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Knowledge of visual attributes in the right hemisphere

Abstract

Neurobiological theories of knowledge processing are biased toward the language-dominant (usually the left) hemisphere. Does the right hemisphere critically contribute to knowledge processing? J.A. is a left-hemisphere language-dominant individual who suffered a lesion confined to the right mid- and anterior fusiform gyrus. Although her language abilities are intact, she showed a partial loss of knowledge of the visual attributes of biological and nonbiological entities. This was observed regardless of the task performed: object discrimination, oral feature generation, forced-choice naming-to-definition or free-hand drawing. Functional-associative and nonvisual sensory attributes were spared. The same region that was lesioned in J.A. was activated in a functional magnetic resonance imaging study in 27 volunteers who retrieved semantic associations between concepts, but only if the concepts were represented as pictures and not as words. Therefore, right fusiform gyrus critically contributes to the conscious recollection of visual attributes of familiar entities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuroanatomy of J.A.'s lesion.
Figure 2: Object identification and name retrieval in J.A., M.V. and control subjects.
Figure 3: Knowledge of visual attributes.
Figure 4: Associative-semantic knowledge.

Similar content being viewed by others

References

  1. Plato . Phaedo <http://classics.mit.edu/Plato/phaedo.html> (1994).

  2. Saffran, E.M. & Sholl, A. Clues to the functional and neural architecture of word meaning. in The Neurocognition of Language (eds. Brown, C.M. & Hagoort, P.) Ch. 8 241–272 (Oxford University Press, Oxford, 1999).

    Google Scholar 

  3. Caramazza, A. The organization of conceptual knowledge in the brain. in The New Cognitive Neurosciences (ed. Gazzaniga, M.) 1037–1046 (MIT Press, Cambridge, MA, 2000).

    Google Scholar 

  4. Sartori, G. & Job, R. The oyster with four legs: a neuropsychological study on the interaction between vision and semantic information. Cogn. Neuropsychol. 5, 105–132 (1988).

    Article  Google Scholar 

  5. Luzzatti, C. & Davidoff, J. Impaired retrieval of object-colour knowledge with preserved colour naming. Neuropsychologia 32, 933–950 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Breedin, S.D., Saffran, E.M. & Coslett, H.B. Reversal of the concreteness effet in a patient with semantic dementia. Cogn. Neuropsychol. 11, 617–660 (1994).

    Article  Google Scholar 

  7. Carbonnel, S., Charnallet, A., David, D. & Pellat, J. One or several semantic systems? Maybe none: evidence from a case study of modality and category-specific “semantic” impairment. Cortex 33, 391–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Forde, E.M.E., Francis, D., Riddoch, M.J., Rumiati, R.I. & Humphreys, G.W. On the links between visual knowledge and naming: a single case study of a patient with a category-specific impairment for living things. Cogn. Neuropsychol. 14, 403–458 (1997).

    Article  Google Scholar 

  9. Miceli, G. et al. The dissociation of color from form and function knowledge. Nat. Neurosci. 4, 662–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Warrington, E. & Shallice, T. Category specific semantic impairments. Brain 107, 829–853 (1984).

    Article  PubMed  Google Scholar 

  11. Hillis, A.E. & Caramazza, A. Category-specific naming and comprehension impairment: a double dissociation. Brain 114, 2081–2094 (1991).

    Article  PubMed  Google Scholar 

  12. Hart, J. & Gordon, B. Neural subsystems for object knowledge. Nature 359, 60–64 (1992).

    Article  PubMed  Google Scholar 

  13. Farah, M. The neurological basis of mental imagery: a componential analysis. Cognition 18, 245–272 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Sergent, J. The neuropsychology of visual image generation: data, method, and theory. Brain Cogn. 13, 98–129 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Kosslyn, S.M. & Pomerantz, J.R. Imagery, propositions, and the form of internal representations. Cogn. Psychol. 9, 52–76 (1977).

    Article  Google Scholar 

  16. Ishai, A., Ungerleider, L.G. & Haxby, J.V. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Shallice, T. From Neuropsychology to Mental Structure (Cambridge University Press, Cambridge, UK, 1988).

    Book  Google Scholar 

  18. Marr, D. Vision (Freeman, San Francisco, 1982).

    Google Scholar 

  19. Allport, D.A. Distributed memory, modular subsystems and dysphasia. in Current Perspectives in Dysphasia (eds. Newman, S.K. & Epstein, R.) 32–60 (Churchill Livingstone, Edinburgh, 1985).

    Google Scholar 

  20. Warrington, E.K. & McCarthy, R. Categories of knowledge: further fractionations and an attempted integration. Brain 110, 1273–1296 (1987).

    Article  PubMed  Google Scholar 

  21. Lauro-Grotto, R., Piccini, C. & Shallice, T. Modality-specific operations in semantic dementia. Cortex 33, 593–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Humphreys, G.W. & Forde, E.M.E. Hierarchies, similarity and interactivity in object recognition. Behav. Brain Sci. 24, 453–476 (2001).

    CAS  PubMed  Google Scholar 

  23. Riddoch, J. & Humphreys, G. Visual object processing in optic aphasia: a case of semantic access agnosia. Cogn. Neuropsychol. 4, 131–185 (1987).

    Article  Google Scholar 

  24. Hadjikhani, N. & de Gelder, B. Neural basis of prosopagnosia: an fMRI study. Hum. Brain Mapp. 16, 176–182 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hadjikhani, N., Liu, A.K., Dale, A.M., Cavanagh, P. & Tootell, R.B.H. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235–241 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Riddoch, M.J. & Humphreys, G.W. Birmingham Object Recognition Battery (Lawrence Erlbaum Associates, Hove, UK, 1993).

    Google Scholar 

  28. Warrington, E.K. & James, M. Visual Object and Space Perception Battery (Thames Valley Test Company, Bury St. Edmunds, UK, 1991).

    Google Scholar 

  29. Farah, M. Visual Agnosia (MIT Press, Cambridge, Massachusetts, 2004).

    Book  Google Scholar 

  30. Ruts, W. et al. Dutch norm data for 13 semantic categories and 338 exemplars. Behav. Res. Methods Instrum. Comput. 36, 506–515 (2004).

    Article  PubMed  Google Scholar 

  31. Crawford, J.R. & Garthwaite, P.H. Testing for suspected impairments and dissociations in single-case studies in neuropsychology: evaluation of alternatives using Monte Carlo simulations and revised tests for dissociations. Neuropsychology 19, 318–331 (2005).

    Article  PubMed  Google Scholar 

  32. Powell, J. & Davidoff, J. Selective impairments of object knowledge in a case of acquired color blindness. Memory 3, 435–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Faglioni, P. & Botti, C. How to differentiate retrieval from storage deficit: a stochastic approach to semantic memory modeling. Cortex 29, 501–518 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Laiacona, M. & Capitani, E. A case of prevailing deficit of nonliving categories or a case of prevailing sparing of living categories. Cogn. Neuropsychol. 18, 39–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Vandenberghe, R., Price, C.J., Wise, R., Josephs, O. & Frackowiak, R.S.J. Functional anatomy of a common semantic system for words and pictures. Nature 383, 254–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Chao, L.L., Haxby, J.V. & Martin, A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat. Neurosci. 2, 913–919 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Barsalou, L.W. Perceptual symbol systems. Behav. Brain Sci. 22, 577–609 (1999).

    CAS  PubMed  Google Scholar 

  38. Pylyshyn, Z. Seeing and Visualizing: It is Not What You Think (MIT Press, Cambridge, Massachusetts, 2003).

    Book  Google Scholar 

  39. Jackendoff, R. On beyond zebra: the relation of linguistic and visual information. Cognition 26, 89–114 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Paivio, A. Dual coding theory: retrospect and current status. Can. J. Psychol. 45, 255–287 (1991).

    Article  Google Scholar 

  41. Howard, D. & Patterson, K. Pyramids and Palm Trees: a Test of Semantic Access from Pictures and Words (Thames Valley Publishing, Bury St. Edmunds, UK, 1992).

    Google Scholar 

  42. McKenna, P. & Warrington, E.K. The neuropsychology of semantic memory. in Handbook of Neuropsychology Vol. 2 (eds. Boller, F. & Grafman, J.) Ch. 15 355–382 (Elsevier Science, Amsterdam, 2000).

    Google Scholar 

  43. McCarthy, R. & Warrington, E. Evidence for modality-specific meaning systems in the brain. Nature 334, 428–430 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Warrington, E. & McCarthy, R. Multiple meaning systems in the brain: a case for visual semantics. Neuropsychologia 32, 1465–1473 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Crawford, J.R. & Howell, D.C. Comparing an individual's test score against norms derived from small samples. Clin. Neuropsychol. 12, 482–486 (1998).

    Article  Google Scholar 

  46. Snodgrass, J. & Vanderwart, M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity and visual complexity. J. Exp. Psychol. [Hum. Learn.] 6, 174–215 (1980).

    Article  CAS  Google Scholar 

  47. Vandenbulcke, M., Peeters, R., Van Hecke, P. & Vandenberghe, R. Anterior temporal laterality in primary progressive aphasia shifts to the right. Ann. Neurol. 58, 362–370 (2005).

    Article  PubMed  Google Scholar 

  48. Friston, K. et al. Statistical parametric maps in functional imaging: a general approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  49. Denys, K. et al. The processing of visual shape in the cerebral cortex of human and non-human primates: an fMRI study. J. Neurosci. 24, 2551–2565 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vanduffel, W. et al. Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298, 413–415 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.M. Mesulam, G. Orban, G. Storms and R. Vogels for comments on earlier versions of the manuscript. Supported by Fund for Scientific Research (Flanders) (G0277.05), KU Leuven (OT/04/41) and the Medical Foundation Queen Elisabeth. R.V. is a clinical investigator of the Fund for Scientific Research (Flanders).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rik Vandenberghe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Neuropsychological profile in JA and MV. (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenbulcke, M., Peeters, R., Fannes, K. et al. Knowledge of visual attributes in the right hemisphere. Nat Neurosci 9, 964–970 (2006). https://doi.org/10.1038/nn1721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing