Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Subcellular organization of GABAergic synapses: role of ankyrins and L1 cell adhesion molecules

Abstract

In vertebrate nervous systems, different classes of synaptic inputs are often segregated into restricted compartments of target neurons. For example, distinct types of GABAergic interneurons preferentially innervate subcellular domains and have been implicated in the precise temporal regulation of integration within neurons and activity within networks. Recent studies suggest that the subcellular segregation of different classes of GABAergic synapses is largely genetically determined. The localization and signaling of L1 family immunoglobulin proteins recruited by ankyrin-based membrane adaptors might serve as compartmental labels, which contribute to subcellular synapse organization in cerebellar Purkinje neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular organization of GABAergic inputs.
Figure 2: Possible mechanisms directing GABAergic innervation at the AIS of cerebellar Purkinje neurons.

Similar content being viewed by others

References

  1. Benson, D.L., Colman, D.R. & Huntley, G.W. Molecules, maps and synapse specificity. Nat. Rev. Neurosci. 2, 899–909 (2001).

    Article  CAS  Google Scholar 

  2. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  Google Scholar 

  3. Flanagan, J.G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  4. Shen, K. Molecular mechanisms of target specificity during synapse formation. Curr. Opin. Neurobiol. 14, 83–88 (2004).

    Article  CAS  Google Scholar 

  5. Cajal, S. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  6. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  7. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  8. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  Google Scholar 

  9. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  Google Scholar 

  10. Clark, B.A., Monsivais, P., Branco, T., London, M. & Hausser, M. The site of action potential initiation in cerebellar Purkinje neurons. Nat. Neurosci. 8, 137–139 (2005).

    Article  CAS  Google Scholar 

  11. Williams, S.R. & Stuart, G.J. Role of dendritic synapse location in the control of action potential output. Trends Neurosci. 26, 147–154 (2003).

    Article  CAS  Google Scholar 

  12. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  13. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  14. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  15. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  16. Kapfer, C., Seidl, A.H., Schweizer, H. & Grothe, B. Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat. Neurosci. 5, 247–253 (2002).

    Article  CAS  Google Scholar 

  17. Amaral, D.G. Synaptic extensions from the mossy fibers of the fascia dentata. Anat. Embryol. (Berl.) 155, 241–251 (1979).

    Article  CAS  Google Scholar 

  18. Raisman, G. & Ebner, F.F. Mossy fibre projections into and out of hippocampal transplants. Neuroscience 9, 783–801 (1983).

    Article  CAS  Google Scholar 

  19. Zimmer, J. & Gahwiler, B.H. Growth of hippocampal mossy fibers: a lesion and coculture study of organotypic slice cultures. J. Comp. Neurol. 264, 1–13 (1987).

    Article  CAS  Google Scholar 

  20. Dailey, M.E., Buchanan, J., Bergles, D.E. & Smith, S.J. Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro. J. Neurosci. 14, 1060–1078 (1994).

    Article  CAS  Google Scholar 

  21. Kavalali, E.T., Klingauf, J. & Tsien, R.W. Activity-dependent regulation of synaptic clustering in a hippocampal culture system. Proc. Natl. Acad. Sci. USA 96, 12893–12900 (1999).

    Article  CAS  Google Scholar 

  22. Di Cristo, G. et al. Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat. Neurosci. 7, 1184–1186 (2004).

    Article  CAS  Google Scholar 

  23. Ango, F. et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119, 257–272 (2004).

    Article  CAS  Google Scholar 

  24. Brummendorf, T., Kenwrick, S. & Rathjen, F.G. Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr. Opin. Neurobiol. 8, 87–97 (1998).

    Article  CAS  Google Scholar 

  25. Davis, J.Q., Lambert, S. & Bennett, V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. J. Cell Biol. 135, 1355–1367 (1996).

    Article  CAS  Google Scholar 

  26. Rathjen, F.G., Wolff, J.M., Chang, S., Bonhoeffer, F. & Raper, J.A. Neurofascin: a novel chick cell-surface glycoprotein involved in neurite-neurite interactions. Cell 51, 841–849 (1987).

    Article  CAS  Google Scholar 

  27. Bennett, V. & Baines, A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81, 1353–1392 (2001).

    Article  CAS  Google Scholar 

  28. Mohler, P.J., Gramolini, A.O. & Bennett, V. Ankyrins. J. Cell Sci. 115, 1565–1566 (2002).

    CAS  PubMed  Google Scholar 

  29. Zhou, D. et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295–1304 (1998).

    Article  CAS  Google Scholar 

  30. Howard, A., Tamas, G. & Soltesz, I. Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci. 28, 310–316 (2005).

    Article  CAS  Google Scholar 

  31. King, J.S., Chen, Y.F. & Bishop, G.A. An analysis of HRP-filled basket cell axons in the cat's cerebellum. II. Axonal distribution. Anat. Embryol. (Berl.) 188, 299–305 (1993).

    Article  CAS  Google Scholar 

  32. Palay, S.L. & Palay, V.C. Cerebellar Cortex (Springer-Verlag, New York, 1974).

    Book  Google Scholar 

  33. Salzer, J.L. Polarized domains of myelinated axons. Neuron 40, 297–318 (2003).

    Article  CAS  Google Scholar 

  34. Eshed, Y. et al. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47, 215–229 (2005).

    Article  CAS  Google Scholar 

  35. Castellani, V., Falk, J. & Rougon, G. Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM. Mol. Cell. Neurosci. 26, 89–100 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Hausser for comments on the manuscript. This work is supported by the US National Institutes of Health and the March of Dimes Birth Defects Foundation. The author is a Pew, EJLB and McKnight Scholar.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z. Subcellular organization of GABAergic synapses: role of ankyrins and L1 cell adhesion molecules. Nat Neurosci 9, 163–166 (2006). https://doi.org/10.1038/nn1638

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing