Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From genes to behavior in developmental dyslexia

Abstract

All four genes thus far linked to developmental dyslexia participate in brain development, and abnormalities in brain development are increasingly reported in dyslexia. Comparable abnormalities induced in young rodent brains cause auditory and cognitive deficits, underscoring the potential relevance of these brain changes to dyslexia. Our perspective on dyslexia is that some of the brain changes cause phonological processing abnormalities as well as auditory processing abnormalities; the latter, we speculate, resolve in a proportion of individuals during development, but contribute early on to the phonological disorder in dyslexia. Thus, we propose a tentative pathway between a genetic effect, developmental brain changes, and perceptual and cognitive deficits associated with dyslexia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein domains and possible functions.
Figure 2: Human and animal neocortical malformations.

Similar content being viewed by others

References

  1. Hinshelwood, J. Congenital Word-blindness (Lewis, London, 1917).

    Book  Google Scholar 

  2. Galaburda, A.M., Sherman, G.F., Rosen, G.D., Aboitiz, F. & Geschwind, N. Developmental dyslexia: four consecutive cases with cortical anomalies. Ann. Neurol. 18, 222–233 (1985).

    Article  CAS  Google Scholar 

  3. Drake, W.E. Clinical and pathological finding in a child with a developmental learning disability. J. Learn. Disabil. 1, 486–502 (1968).

    Article  Google Scholar 

  4. Chang, B.S. et al. Reading impairment in the neuronal migration disorder of periventricular nodular heterotopia. Neurology 64, 799–803 (2005).

    Article  CAS  Google Scholar 

  5. de Vasconcelos Hage, S.R. et al. Specific language impairment: linguistic annd neurobiological aspects. Arq. Neuropsiquiatr. 64, 173–180 (2006).

    Article  Google Scholar 

  6. Galaburda, A.M., Menard, M.T. & Rosen, G.D. Evidence for aberrant auditory anatomy in developmental dyslexia. Proc. Natl. Acad. Sci. USA 91, 8010–8013 (1994).

    Article  CAS  Google Scholar 

  7. Nicolson, R., Fawcett, A.J. & Dean, P. Dyslexia, development and the cerebellum. Trends Neurosci. 24, 515–516 (2001).

    Article  CAS  Google Scholar 

  8. Fisher, S.E. & Francks, C. Genes, cognition and dyslexia: learning to read the genome. Trends Cogn. Sci. (in the press).

  9. Taipale, M. et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc. Natl. Acad. Sci. USA 100, 11553–11558 (2003).

    Article  CAS  Google Scholar 

  10. Cope, N. et al. Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. Am. J. Hum. Genet. 76, 581–591 (2005).

    Article  CAS  Google Scholar 

  11. Paracchini, S. et al. The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum. Mol. Genet. 15, 1659–1666 (2006).

    Article  CAS  Google Scholar 

  12. Meng, H. et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc. Natl. Acad. Sci. USA 102, 17053–17058 (2005).

    Article  CAS  Google Scholar 

  13. Hannula-Jouppi, K. et al. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet. 1, e50 (2005).

    Article  Google Scholar 

  14. Wang, Y. et al. Dyx1c1/EKN1 plays a critical role in neuronal migration in developing neocortex. Neuroscience (in the press).

  15. S.E. & Shaywitz, B.A. A definition of dyslexia. Ann. Dyslexia 53, 1–14 (2003).

    Article  Google Scholar 

  16. Snowling, M.J. Dyslexia (Blackwell, Oxford, 2000).

    Google Scholar 

  17. Ramus, F. Development dyslexia: specific psychological deficits or general sensormotor dysfunction current opinion in neurobiology 13:212–218 (2003).

  18. Wagner, R.K. & Torgesen, J.K. The nature of phonological processing and its causal role in the acquisition of reading skills. Psychol. Bull. 101, 192–212 (1987).

    Article  Google Scholar 

  19. Stein, J. & Walsh, V. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 20, 147–152 (1997).

    Article  CAS  Google Scholar 

  20. Valdois, S., Bosse, M.-L. & Tainturier, M.-J. The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia 10, 339–363 (2004).

    Article  Google Scholar 

  21. Eckert, M. Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies. Neuroscientist 10, 362–371 (2004).

    Article  Google Scholar 

  22. White, S. et al. A double dissociation between sensorimotor impairments and reading disability: a comparison of autistic and dyslexic children. Cogn. Neuropsychol. 23, 748–761 (2006).

    Article  Google Scholar 

  23. Bishop, D.V.M. & Snowling, M.J. Developmental dyslexia and specific language impairment: same or different? Psychol. Bull. 130, 858–886 (2004).

    Article  Google Scholar 

  24. Hill, E.L. Non-specific nature of specific language impairment: a review of the literature with regard to concomitant motor impairments. Int. J. Lang. Commun. Disord. 36, 149–171 (2001).

    Article  CAS  Google Scholar 

  25. Butterworth, B. Developmental dyscalculia. in Handbook of Mathematical Cognition (ed. Campbell, J.I.D.) 455–467 (Psychology Press, New York, 2005).

    Google Scholar 

  26. Leonard, C.M. et al. Anatomical risk factors that distinguish dyslexia from SLI predict reading skill in normal children. J. Commun. Disord. 35, 501–531 (2002).

    Article  Google Scholar 

  27. Smith, S.D., Kimberling, W.J., Pennington, B.F. & Lubs, H.A. Specific reading disability: Identification of an inherited form through linkage analysis. Science 219, 1345–1347 (1983).

    Article  CAS  Google Scholar 

  28. Pennington, B.F. et al. Evidence for major gene transmission of developmental dyslexia. J. Am. Med. Assoc. 266, 1527–1534 (1991).

    Article  CAS  Google Scholar 

  29. Cardon, L.R. et al. Quantitative trait locus for reading disability on chromosome 6. Science 266, 276–279 (1994).

    Article  CAS  Google Scholar 

  30. Allen, K.M., Gleeson, J.G., Shoup, S.M. & Walsh, C.A.A. YAC contig in Xq22.3-q23, from DXS287 to DXS8088, spanning the brain-specific genes doublecortin (DCX) and PAK3. Genomics 52, 214–218 (1998).

    Article  CAS  Google Scholar 

  31. des Portes, V. et al. doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum. Mol. Genet. 7, 1063–1070 (1998).

    Article  CAS  Google Scholar 

  32. Deuel, T.A. et al. Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 49, 41–53 (2006).

    Article  CAS  Google Scholar 

  33. Koizumi, H., Tanaka, T. & Gleeson, J.G. Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 49, 55–66 (2006).

    Article  CAS  Google Scholar 

  34. Coquelle, F.M. et al. Common and divergent roles for members of the mouse DCX superfamily. Cell Cycle 5, 976–983 (2006).

    Article  CAS  Google Scholar 

  35. Wigg, K.G. et al. Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Mol. Psychiatry 9, 1111–1121 (2004).

    Article  CAS  Google Scholar 

  36. Chapman, N.H. et al. Linkage analyses of four regions previously implicated in dyslexia: confirmation of a locus on chromosome 15q. Am. J. Med. Genet. B Neuropsychiatr. Genet. 131, 67–75 (2004).

    Article  Google Scholar 

  37. Marino, C. et al. A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. Eur. J. Hum. Genet. 13, 491–499 (2005).

    Article  CAS  Google Scholar 

  38. LoTurco, J.J., Wang, Y. & Paramasivam, M. Neuronal migration and dyslexia susceptibility. in The Dyslexic Brain: New Pathways in Neuroscience Discovery (ed. Rosen, G.D.) 119–128 (Lawrence Erlbaum Associates, Mahwah, New Jersey, 2006).

    Google Scholar 

  39. Erskine, L. et al. Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits. J. Neurosci. 20, 4975–4982 (2000).

    Article  CAS  Google Scholar 

  40. Yuan, W. et al. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 212, 290–306 (1999).

    Article  CAS  Google Scholar 

  41. Zhu, Y., Li, H., Zhou, L., Wu, J.Y. & Rao, Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23, 473–485 (1999).

    Article  CAS  Google Scholar 

  42. Rutter, M. et al. Sex differences in developmental reading disability: new findings from 4 epidemiological studies. J. Am. Med. Assoc. 291, 2007–2012 (2004).

    Article  CAS  Google Scholar 

  43. Rosen, G.D., Herman, A.E. & Galaburda, A.M. Sex differences in the effects of early neocortical injury on neuronal size distribution of the medial geniculate nucleus in the rat are mediated by perinatal gonadal steroids. Cereb. Cortex 9, 27–34 (1999).

    Article  CAS  Google Scholar 

  44. Rosen, G.D., Burstein, D. & Galaburda, A.M. Changes in efferent and afferent connectivity in rats with cerebrocortical microgyria. J. Comp. Neurol. 418, 423–440 (2000).

    Article  CAS  Google Scholar 

  45. Denenberg, V.H., Sherman, G.F., Schrott, L.M., Rosen, G.D. & Galaburda, A.M. Spatial learning, discrimination learning, paw preference and neocortical ectopias in two autoimmune strains of mice. Brain Res. 562, 98–104 (1991).

    Article  CAS  Google Scholar 

  46. Rosen, G.D., Waters, N.S., Galaburda, A.M. & Denenberg, V.H. Behavioral consequences of neonatal injury of the neocortex. Brain Res. 681, 177–189 (1995).

    Article  Google Scholar 

  47. Peiffer, A.M., Friedman, J.T., Rosen, G.D. & Fitch, R.H. Impaired gap detection in juvenile microgyric rats. Brain Res. Dev. Brain Res. 152, 93–98 (2004).

    Article  CAS  Google Scholar 

  48. Fitch, R.H., Tallal, P., Brown, C., Galaburda, A.M. & Rosen, G.D. Induced microgyria and auditory temporal processing in rats: a model for language impairment? Cereb. Cortex 4, 260–270 (1994).

    Article  CAS  Google Scholar 

  49. Clark, M.G., Rosen, G.D., Tallal, P. & Fitch, R.H. Impaired two-tone processing at rapid rates in male rats with induced microgyria. Brain Res. 871, 94–97 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant HD20806 and by the The Dyslexia Foundation, and by grants from the Ville de Paris and the European Commission NEURODYS Project.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galaburda, A., LoTurco, J., Ramus, F. et al. From genes to behavior in developmental dyslexia. Nat Neurosci 9, 1213–1217 (2006). https://doi.org/10.1038/nn1772

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing