Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tctex1-Ca2+ channel complex for selective surface expression of Ca2+ channels in neurons

Abstract

Voltage-gated Ca2+ channels (VGCCs) are important in regulating a variety of cellular functions in neurons. It remains poorly understood how VGCCs with different functions are sorted within neurons. Here we show that the t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein motor complex, interacts directly and selectively with N- and P/Q-type Ca2+ channels, but not L-type Ca2+ channels. The interaction is insensitive to Ca2+. Overexpression in hippocampal neurons of a channel fragment containing the binding domain for tctex1 significantly decreases the surface expression of endogenous N- and P/Q-type Ca2+ channels but not L-type Ca2+ channels, as determined by immunostaining. Furthermore, disruption of the tctex1–Ca2+ channel interaction significantly reduces the Ca2+ current density in hippocampal neurons. These results underscore the importance of the specific tctex1-channel interaction in determining sorting and trafficking of neuronal Ca2+ channels with different functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective interaction between tctex1 and N- and P/Q-type Ca2+ channels.
Figure 2: Effects of Ca2+ on the tctex1-channel interaction, and identification of the tctex1 binding domain on the channel C terminus.
Figure 3: Sensitized FRET and acceptor photobleaching measurements point to interaction between tctex1 and full-length N-type Ca2+ channels.
Figure 4: Formation of the tctex1–Ca2+ channel complex in vivo.
Figure 5: Overexpression of a dominant-negative construct, NCD4-GFP, reduces surface expression of endogenous N-type Ca2+ channels.
Figure 6: Quantitative summary of the effects of overexpression of a dominant-negative construct on surface expression of three different types of endogenous Ca2+ channels.
Figure 7: Disruption of the tctex1–Ca2+ channel interaction reduces the Ca2+ current density in hippocampal neurons.
Figure 8: Quantitative analysis of the effects of NCD4-GFP on the Ca2+ current density in hippocampal neurons.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Catterall, W.A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24, 307–323 (1998).

    Article  CAS  Google Scholar 

  2. Dunlap, K., Luebke, J.I. & Turner, T.J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 18, 89–98 (1995).

    Article  CAS  Google Scholar 

  3. Zhang, J.F. et al. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacol. 32, 1075–1088 (1993).

    Article  CAS  Google Scholar 

  4. Wheeler, D.B., Randall, A. & Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    Article  CAS  Google Scholar 

  5. West, A.E., Griffith, E.C. & Greenberg, M.E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002).

    Article  CAS  Google Scholar 

  6. Westenbroek, R.E., Ahlijanian, M.K. & Catterall, W.A. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284 (1990).

    Article  CAS  Google Scholar 

  7. Westenbroek, R.E. et al. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9, 1099–1115 (1992).

    Article  CAS  Google Scholar 

  8. Westenbroek, R.E. et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J. Neurosci. 15, 6403–6418 (1995).

    Article  CAS  Google Scholar 

  9. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

    Article  CAS  Google Scholar 

  10. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251 (2002).

    Article  CAS  Google Scholar 

  11. Sheng, M. Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. USA 98, 7058–7061 (2001).

    Article  CAS  Google Scholar 

  12. Nishimune, H., Sanes, J.R. & Carlson, S.S. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004).

    Article  CAS  Google Scholar 

  13. Catterall, W.A. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann. NY Acad. Sci. 868, 144–159 (1999).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 115, 37–48 (2003).

    Article  CAS  Google Scholar 

  15. Herlitze, S. et al. Targeting mechanisms of high voltage-activated Ca2+ channels. J. Bioenerg. Biomembr. 35, 621–637 (2003).

    Article  CAS  Google Scholar 

  16. Vallee, R.B., Williams, J.C., Varma, D. & Barnhart, L.E. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  Google Scholar 

  17. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  18. Karcher, R.L., Deacon, S.W. & Gelfand, V.I. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21–27 (2002).

    Article  CAS  Google Scholar 

  19. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  20. Setou, M., Nakagawa, T., Seog, D.H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 11796–11802 (2000).

    Article  Google Scholar 

  21. Tai, A.W., Chuang, J.Z., Bode, C., Wolfrum, U. & Sung, C.H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    Article  CAS  Google Scholar 

  22. Maeno-Hikichi, Y. et al. A PKCε-ENH-channel complex specifically modulates N-type Ca2+ channels. Nat. Neurosci. 6, 468–475 (2003).

    Article  CAS  Google Scholar 

  23. King, S.M. et al. The mouse t-complex-encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J. Biol. Chem. 271, 32281–32287 (1996).

    Article  CAS  Google Scholar 

  24. Kamal, A. & Goldstein, L.S. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68 (2002).

    Article  CAS  Google Scholar 

  25. Llinas, R., Sugimori, M. & Silver, R.B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  CAS  Google Scholar 

  26. Williams, M.E. et al. Structure and functional expression of an ω-conotoxin-sensitive human N-type calcium channel. Science 257, 389–395 (1992).

    Article  CAS  Google Scholar 

  27. Gordon, G.W., Berry, G., Liang, X.H., Levine, B. & Herman, B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998).

    Article  CAS  Google Scholar 

  28. Jiang, X. & Sorkin, A. Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol. Biol. Cell. 13, 1522–1535 (2002).

    Article  CAS  Google Scholar 

  29. Siegel, R.M. et al. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci. STKE 2000, PL1 (2000).

    Article  CAS  Google Scholar 

  30. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z. & Yue, D.T. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron. 31, 973–985 (2001).

    Article  CAS  Google Scholar 

  31. Dotti, C., Sullivan, C. & Banker, G. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  32. Bartlett, W. & Banker, G. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. II. Synaptic relationships. J. Neurosci. 4, 1954–1965 (1984).

    Article  CAS  Google Scholar 

  33. Pravettoni, E. et al. Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol. 227, 581–594 (2000).

    Article  CAS  Google Scholar 

  34. Jones, O.T. et al. N-type calcium channels in the developing rat hippocampus: subunit, complex, and regional expression. J. Neurosci. 17, 6152–6164 (1997).

    Article  CAS  Google Scholar 

  35. Bahls, F.H. et al. Contact-dependent regulation of N-type calcium channel subunits during synaptogenesis. J. Neurobiol. 35, 198–208 (1998).

    Article  CAS  Google Scholar 

  36. Maximov, A. & Bezprozvanny, I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J. Neurosci. 22, 6939–6952 (2002).

    Article  CAS  Google Scholar 

  37. King, S.M. et al. Cytoplasmic dynein contains a family of differentially expressed light chains. Biochem. 37, 15033–15041 (1998).

    Article  CAS  Google Scholar 

  38. Fuhrmann, J.C. et al. Gephyrin interacts with dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci. 22, 5393–5402 (2002).

    Article  CAS  Google Scholar 

  39. Schwarzer, C., Barnikol-Watanabe, S., Thinnes, F.P. & Hilschmann, N. Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Int. J. Biochem. Cell Biol. 34, 1059–1070 (2002).

    Article  CAS  Google Scholar 

  40. Nagano, F. et al. Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. Implication in dynein-dependent vesicle transport. J. Biol. Chem. 273, 30065–30068 (1998).

    Article  CAS  Google Scholar 

  41. Yano, H. et al. Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J. Neurosci. 21, RC125 (2001).

    Article  CAS  Google Scholar 

  42. Campbell, K.S., Cooper, S., Dessing, M., Yates, S. & Buder, A. Interaction of p59fyn kinase with the dynein light chain, Tctex-1, and colocalization during cytokinesis. J. Immunol. 161, 1728–1737 (1998).

    CAS  PubMed  Google Scholar 

  43. Mok, Y.K., Lo, K.W. & Zhang, M. Structure of Tctex-1 and its interaction with cytoplasmic dynein intermediate chain. J. Biol. Chem. 276, 14067–14074 (2001).

    Article  CAS  Google Scholar 

  44. Susalka, S.J., Hancock, W.O. & Pfister, K.K. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochim. Biophys. Acta. 1496, 76–88 (2000).

    Article  CAS  Google Scholar 

  45. Tai, A.W., Chuang, J.Z. & Sung, C.H. Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem. 273, 19639–19649 (1998).

    Article  CAS  Google Scholar 

  46. Chuang, J.Z., Milner, T.A. & Sung, C.H. Subunit heterogeneity of cytoplasmic dynein: Differential expression of 14 kDa dynein light chains in rat hippocampus. J. Neurosci. 21, 5501–5512 (2001).

    Article  CAS  Google Scholar 

  47. Augustine, G.J. How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001).

    Article  CAS  Google Scholar 

  48. Rizo, J. & Sudhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 3, 641–653 (2002).

    Article  CAS  Google Scholar 

  49. Gundelfinger, E.D., Kessels, M.M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nat. Rev. Mol. Cell Biol. 4, 127–139 (2003).

    Article  CAS  Google Scholar 

  50. Verhage, M. et al. DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18, 453–461 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Pittman for the use of a Nikon Eclipse TE2000 inverted microscope; K. Campbell and C.H. Sung for anti-tctex1 antibody; M. Maronski and M. Dichter for help with hippocampal neuron cultures; P. Baas, K. Pfister and J. Meinkoth for helpful discussions and comments; and J. Field for initial help with yeast two-hybrid screening. This work was supported by grants from the US National Institutes of Health (J.F.Z. & W.A.S.), the American Heart Association (J.F.Z.) and the National Alliance for Research on Schizophrenia and Depression (Y.M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-fang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, M., Wang, F., Rohan, J. et al. A tctex1-Ca2+ channel complex for selective surface expression of Ca2+ channels in neurons. Nat Neurosci 8, 435–442 (2005). https://doi.org/10.1038/nn1418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing