Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets

Abstract

Classical cadherins have been proposed to mediate interactions between pre- and postsynaptic cells that are necessary for synapse formation. We provide the first direct, genetic evidence in favor of this model by examining the role of N-cadherin in controlling the pattern of synaptic connections made by photoreceptor axons in Drosophila. N-cadherin is required in both individual photoreceptors and their target neurons for photoreceptor axon extension. Cell-by-cell reconstruction of wild-type photoreceptor axons extending within mosaic patches of mutant target cells shows that N-cadherin mediates attractive interactions between photoreceptors and their targets. This interaction is not limited to those cells that will become the synaptic partners of photoreceptors. Multiple N-cadherin isoforms are produced, but single isoforms can substitute for endogenous N-cadherin activity. We propose that N-cadherin mediates a homophilic, attractive interaction between photoreceptor growth cones and their targets that precedes synaptic partner choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-cadherin is the only classical cadherin involved in R-cell target selection.
Figure 2: Single-cell MARCM analysis of N-cadherin function in R cells.
Figure 3: A single N-cadherin isoform can rescue extension in all R-cell subtypes.
Figure 4: N-cadherin function is required in lamina neurons for cartridge assembly.
Figure 5: N-cadherin function is required in the target column, not the column of origin.
Figure 6: R-cell extension depends on the number of mutant lamina neurons in the target cartridge.
Figure 7: N-cadherin's role in R-cell extension is distributed among lamina neuron subtypes within the target column.

Similar content being viewed by others

References

  1. Sperry, R.W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000).

    CAS  PubMed  Google Scholar 

  4. Fannon, A.M. & Colman, D.R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki, S.C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433–447 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Lele, Z. et al. parachute/N-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129, 3281–3294 (2002).

    CAS  PubMed  Google Scholar 

  9. Malicki, J., Jo, H. & Pujic, Z. Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev. Biol. 259, 95–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Masai, I. et al. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130, 2479–2494 (2003).

    Article  PubMed  Google Scholar 

  11. Riehl, R. et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837–848 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Inoue, A. & Sanes, J.R. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Poskanzer, K., Needleman, L.A., Bozdagi, O. & Huntley, G.W. N-cadherin regulates ingrowth and laminar targeting of thalamocortical axons. J. Neurosci. 23, 2294–2305 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Price, S.R., De Marco Garcia, N.V., Ranscht, B. & Jessell, T.M. Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109, 205–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Serafini, T. Finding a partner in a crowd: neuronal diversity and synaptogenesis. Cell 98, 133–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Shapiro, L. & Colman, D.R. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 23, 427–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Hill, E., Broadbent, I.D., Chothia, C. & Pettitt, J. Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster. J. Mol. Biol. 305, 1011–1024 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tepass, U. et al. Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Uemura, T. et al. Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev. 10, 659–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Dumstrei, K., Wang, F. & Hartenstein, V. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J. Neurosci. 23, 3325–3335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Hummel, T. & Zipursky, S.L. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 42, 77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, H. & Luo, L. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42, 63–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Clandinin, T.R. et al. Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron 32, 237–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, C.H., Herman, T., Clandinin, T.R., Lee, R. & Zipursky, S.L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30, 437–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Iwai, Y. et al. DN-cadherin is required for spatial arrangement of nerve terminals and ultrastructural organization of synapses. Mol. Cell. Neurosci. 19, 375–388 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Meinertzhagen, I.A. & Hanson, T.E. The development of the optic lobe. in The Development of Drosophila melanogaster (eds. Bate, M. & Martinez-Arias, A.) 1363–1491 (Cold Spring Harbor Press, Cold Spring Harbor, New York, USA, 1993).

    Google Scholar 

  29. Ranscht, B. Cadherins: molecular codes for axon guidance and synapse formation. Int. J. Dev. Neurosci. 18, 643–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Bixby, J.L., Lilien, J. & Reichardt, L.F. Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J. Cell Biol. 107, 353–361 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Tomaselli, K.J., Neugebauer, K.M., Bixby, J.L., Lilien, J. & Reichardt, L.F. N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron 1, 33–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, H. et al. Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat. Cell Biol. 4, 222–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hogan, C. et al. Rap1 regulates the formation of E-cadherin-based cell-cell contacts. Mol. Cell. Biol. 24, 6690–6700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anand, A. et al. Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics 158, 1569–1595 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cooper, M.T. & Bray, S.J. Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 397, 526–530 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H.-T. Zhu and L. Luo for their generous donation of transgenes and stocks, C.-H. Lee and S.L. Zipursky for sharing reagents and for communicating results before publication, and T. Uemura for contributing his N-cadherin and E-cadherin antibodies to our work. We also thank J. Hatzidakis and B. Baker for their assistance with X-ray mutagenesis. L. Luo, J. Nelson, A. Katsov, M. Velez, K.-M. Choe, K. Clark, J. Mast and P.-L. Chen gave helpful comments on the manuscript. This work was supported, in part, by R01 EY015231-01A1 (T.R.C.). T.R.C. is a Sloan Fellow, a Searle Scholar and a recipient of a Burroughs-Wellcome Career Development Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R Clandinin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, S., Caldwell, J., Eberl, D. et al. Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci 8, 443–450 (2005). https://doi.org/10.1038/nn1415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing