Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neurobehavioral assessment in the information age

Abstract

The elucidation of the human and mouse genomes provides new opportunities for exploring the genetic underpinnings of complex mammalian behaviors. This information also provides new windows into the pathophysiology and treatment of neuropsychiatric diseases. Optimal use of the rapidly escalating numbers of mouse lines engineered for these purposes is hindered, however, by practical and theoretical limitations of common behavioral analyses. New strategies combining automated behavioral monitoring and information technologies are currently under development in both academic and industrial settings. These hold promise, both for improving the throughput of mouse behavioral assessment and for providing new insights into the neurobiology of mammalian behavioral regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Willner, P. Behavioral models in psychopharmacology. in Behavioral Models in Psychopharmacology: Theoretical, Industrial and Clinical Perspectives (ed. Willner, P.) 3–18 (Cambridge Univ. Press, Cambridge, UK, 1991).

    Google Scholar 

  2. Cryan, J.F., Markou, A. & Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. Sci. 23, 238–245 (2002).

    Article  CAS  Google Scholar 

  3. Lister, R.G. Ethologically-based animal models of anxiety disorders. Pharmacol. Ther. 46, 321–340 (1990).

    Article  CAS  Google Scholar 

  4. Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180–185 (1987).

    CAS  Google Scholar 

  5. Green, A.R. & Heal, D.J. The effects of drugs on serotonin-mediated behavioural models. in Neuropharmacology of Serotonin (ed. Green, A.R.) 326–365 (Oxford Univ. Press, Oxford, 1985).

    Google Scholar 

  6. Kaakkola, S. & Teravainen, H. Animal models of parkinsonism. Pharmacol. Toxicol. 67, 95–100 (1990).

    Article  CAS  Google Scholar 

  7. Gerlai, R. Phenomics: fiction or the future? Trends Neurosci. 25, 506–509 (2002).

    Article  Google Scholar 

  8. Wahlsten, D., Rustay, N.R., Metten, P. & Crabbe, J.C. In search of a better mouse test. Trends Neurosci. 26, 132–136 (2003).

    Article  CAS  Google Scholar 

  9. Shekhar, A. et al. Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl.) 157, 327–339 (2001).

    Article  CAS  Google Scholar 

  10. Morris, R.G.M., Garrud, P., Rawlins, J.N.P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Wehner, J.M., Bowers, B.J. & Paylor, R. The use of null mutant mice to study complex learning and memory processes. Behav. Genet. 26, 301–312 (1996).

    Article  CAS  Google Scholar 

  12. D'Hooge, R. & De Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60–90 (2001).

    Article  CAS  Google Scholar 

  13. Gerlai, R. Behavioral tests of hippocampal function: simple paradigms complex problems. Behav. Brain Res. 125, 269–277 (2001).

    Article  CAS  Google Scholar 

  14. van der Staay, F.J. & Steckler, T. The fallacy of behavioral phenotyping without standardisation. Genes Brain Behav. 1, 9–13 (2002).

    Article  CAS  Google Scholar 

  15. McIlwain, K.L., Merriweather, M.Y., Yuva-Paylor, L.A. & Paylor, R. The use of behavioral test batteries: effects of training history. Physiol. Behav. 73, 705–717 (2001).

    Article  CAS  Google Scholar 

  16. Rogers, D.C. et al. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome 8, 711–713 (1997).

    Article  CAS  Google Scholar 

  17. Voikar, V., Vasar, E. & Rauvala, H. Behavioral alterations induced by repeated testing in C57BL/6J and 129S2/Sv mice: Implications for phenotyping screens. Genes Brain Behav. 3, 27–38 (2004).

    Article  CAS  Google Scholar 

  18. Blanchard, R.J. & Blanchard, D.C. Bringing natural behaviors into the laboratory: a tribute to Paul MacLean. Physiol. Behav. 79, 515–524 (2003).

    Article  CAS  Google Scholar 

  19. Whishaw, I.Q. & Tomie, J.A. Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol. Behav. 60, 1191–1197 (1996).

    Article  CAS  Google Scholar 

  20. Gerlai, R. & Clayton, N.S. Analysing hippocampal function in transgenic mice: an ethological perspective. Trends Neurosci 22, 47–51 (1999).

    Article  CAS  Google Scholar 

  21. Dell'Omo, G., Ricceri, L., Wolfer, D.P., Poletaeva, II & Lipp, H. Temporal and spatial adaptation to food restriction in mice under naturalistic conditions. Behav. Brain Res. 115, 1–8 (2000).

    Article  CAS  Google Scholar 

  22. Vyssotski, A.L. et al. Long-term monitoring of hippocampus-dependent behavior in naturalistic settings: mutant mice lacking neurotrophin receptor TrkB in the forebrain show spatial learning but impaired behavioral flexibility. Hippocampus 12, 27–38 (2002).

    Article  CAS  Google Scholar 

  23. Nestler, E.J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Blanchard, D.C., Griebel, G. & Blanchard Robert, J. The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463, 97–116 (2003).

    Article  CAS  Google Scholar 

  25. Scott, M.R., Supattapone, S., Nguyen, H.O., DeArmond, S.J. & Prusiner, S.B. Transgenic models of prion disease. Arch. Virol. 16 (Suppl.), 113–124 (2000).

    Google Scholar 

  26. Owens, T., Wekerle, H. & Antel, J. Genetic models for CNS inflammation. Nat. Med. 7, 161–166 (2001).

    Article  CAS  Google Scholar 

  27. Ahmad-Annuar, A., Tabrizi, S.J. & Fisher, E.M. Mouse models as a tool for understanding neurodegenerative diseases. Curr. Opin. Neurol. 16, 451–458 (2003).

    Google Scholar 

  28. Ferrante, R.J. et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J. Neurosci. 22, 1592–1599 (2002).

    Article  CAS  Google Scholar 

  29. Bates, G.P. & Hockly, E. Experimental therapeutics in Huntington's disease: are models useful for therapeutic trials? Curr. Opin. Neurol. 16, 465–470 (2003).

    Google Scholar 

  30. Dell'Omo, G. et al. Early behavioural changes in mice infected with BSE and scrapie: automated home cage monitoring reveals prion strain differences. Eur. J. Neurosci. 16, 735–742 (2002).

    Article  Google Scholar 

  31. Nestler, E.J. et al. Preclinical models: status of basic research in depression. Biol. Psychiatry 52, 503–528 (2002).

    Article  Google Scholar 

  32. Tecott, L.H. The genes and brains of mice and men. Am. J. Psychiatry 160, 646–656 (2003).

    Article  Google Scholar 

  33. Koob, G.F., Sanna, P.P. & Bloom, F.E. Neuroscience of addiction. Neuron 21, 467–476 (1998).

    Article  CAS  Google Scholar 

  34. Wise, R.A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998).

    Article  CAS  Google Scholar 

  35. Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Shaham, Y., Erb, S. & Stewart, J. Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res. Brain Res. Rev. 33, 13–33 (2000).

    Article  CAS  Google Scholar 

  37. Sutton, M.A. et al. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75 (2003).

    Article  CAS  Google Scholar 

  38. McClearn, G.E. Genetics and alcoholism simulacra. Alcohol Clin. Exp. Res. 3, 255–258 (1979).

    Article  CAS  Google Scholar 

  39. Hrabe de Angelis, M.H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 25, 444–447 (2000).

    Article  CAS  Google Scholar 

  40. Hunter, A.J., Nolan, P.M. & Brown, S.D. Towards new models of disease and physiology in the neurosciences: the role of induced and naturally occurring mutations. Hum. Mol. Genet. 9, 893–900 (2000).

    Article  CAS  Google Scholar 

  41. Brunner, D., Nestler, E. & Leahy, E. In need of high-throughput behavioral systems. Drug Discov. Today 7, S107–S112 (2002).

    Article  CAS  Google Scholar 

  42. Goulding, E.H., Juneja, P., Wade, J. & Tecott, L.H. Quantitative analysis of ingestive behavior pattern in 5-HT2c receptor, obese, and agouti mutant mice. Appetite 39, 78 (2002).

    Google Scholar 

  43. Paigen, K. & Eppig, J.T. A mouse phenome project. Mamm. Genome 11, 715–717 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence H Tecott.

Ethics declarations

Competing interests

E.J.N. reports financial interests in PsychoGenics, Inc., a biotech company invested in development of high-throughput behavioral assays.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tecott, L., Nestler, E. Neurobehavioral assessment in the information age. Nat Neurosci 7, 462–466 (2004). https://doi.org/10.1038/nn1225

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing