Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions with identified muscle cells break motoneuron equivalence in embryonic zebrafish

Abstract

Two zebrafish motoneurons, CaP and VaP, are initially developmentally equivalent; later, CaP innervates ventral muscle, whereas VaP dies. Current models suggest that vertebrate motoneuron death results from failure to compete for limited, target-derived trophic support. In contrast, we provide evidence that zebrafish ventral muscle can support both CaP and VaP survival. However, VaP's growth cone is prevented from extending into ventral muscle by CaP-dependent interactions with identified muscle fibers, the muscle pioneers; this interaction breaks the initial equivalence of CaP and VaP. Thus, the processes mediating VaP death are more complex than failure to compete for trophic support, and may be important for correct spatial patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ventral muscle can support two CaPs.
Figure 2: Both CaP and VaP extend axons into ventral muscle and survive after MP ablation and in mutants lacking MPs.
Figure 3: Diagrammatic representation of the effect of CaP and VaP somata juxtaposition on VaP survival.
Figure 4: Two MiPs divide the dorsal innervation territory.
Figure 5: Model of interactions between CaP, MPs and VaP.

Similar content being viewed by others

References

  1. Horvitz, H. R., Shaham, S. & Hengartner, M. O. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. 59, 377–385 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Hamburger, V. & Oppenheim, R. W. Naturally occurring neuronal death in vertebrates. Neurosci. Comm. 1, 39–55 (1982).

    Google Scholar 

  3. Pettmann, B. & Henderson, C. E. Neuronal cell death. Neuron 20, 633–647 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Grieshammer, U., Lewandoski, M., Prevette, D. M., Oppenheim, R. W. & Martin, G. R. Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev. Biol. 197, 234–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Oppenheim, R. W. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 12, 252–257 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Greensmith, L. & Vrbová, G. Motoneurone survival: a functional approach. Trends Neurosci. 19, 450–455 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. DeChiara, T. M. et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits. Cell 83, 313–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Garcès, A. et al. GFRα1 is required for development of distinct subpopulations of motoneuron. J. Neurosci. 20, 4992–5000 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oppenheim, R. W. et al. Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J. Neurosci. 20, 5001–5011 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oppenheim, R. W. et al. Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J. Neurosci. 21, 1283–1291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westerfield, M., McMurray, J. & Eisen, J. S. Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 6, 2267–2277 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eisen, J. S., Pike, S. H. & Romancier, B. An identified neuron with variable fates in embryonic zebrafish. J. Neurosci. 10, 34–43 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eisen, J. S. The role of interactions in determining cell fate of two identified motoneurons in the embryonic zebrafish. Neuron 8, 231–240 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Appel, B. et al. Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish. Development 121, 4117–4125 (1995).

    CAS  PubMed  Google Scholar 

  15. Eisen, J. S., Myers, P. Z. & Westerfield, M. Pathway selection by growth cones of identified motoneurons in live zebrafish embryos. Nature 320, 269–271 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, D. W. & Westerfield, M. The formation of terminal fields in the absence of competitive interactions among primary motoneurons in the zebrafish. J. Neurosci. 10, 3947–3959 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melançon, E., Liu, D., Westerfield, M. & Eisen, J. Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers. J. Neurosci. 17, 7796–7804 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beattie, C. E., Melancon, E. & Eisen, J. S. Mutations in the stumpy gene reveal intermediate targets for zebrafish motor axons. Development 127, 2653–2662 (2000).

    CAS  PubMed  Google Scholar 

  19. Kimble, J., Sulston, J. & White, J. in Cell Lineage, Stem Cells and Cell Determination (ed. Le Douarin, N.) 59–68 (Elsevier/North Holland Biomedical, Amsterdam, The Netherlands, 1979).

    Google Scholar 

  20. Raible, D. W. & Eisen, J. S. Lateral specification of cell fate during vertebrate development. Curr. Opin. Gen. Dev. 5, 444–449 (1995).

    Article  CAS  Google Scholar 

  21. Gatchalian, C. L. & Eisen, J. S. Pathway selection by growth cones of ectopic motoneurons in embryonic zebrafish. Neuron 9, 105–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Stewart, W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14, 741–759 (1978).

    Article  CAS  PubMed  Google Scholar 

  23. Felsenfeld, A. L., Curry, M. & Kimmel, C. B. The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev. Biol. 148, 23–30 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Halpern, M. E., Ho, R. K., Walker, C. & Kimmel, C. B. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Currie, P. D. & Ingham, P. W. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382, 452–455 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Du, S. J., Devoto, S. H., Westerfield, M. & Moon, R. T. Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-β gene families. J. Cell Biol. 139, 145–156 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henion, P. D. et al. A screen for mutations affecting development of zebrafish neural crest. Dev. Gen. 18, 11–17 (1996).

    Article  CAS  Google Scholar 

  28. Eisen, J. S. Determination of primary motoneuron identity in developing zebrafish embryos. Science 252, 569–572 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Raible, D. W. et al. Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Dev. Dyn. 195, 29–42 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599–607 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Pike, S. H. & Eisen, J. S. Interactions between identified motoneurons in embryonic zebrafish are not required for normal motoneuron development. J. Neurosci. 10, 44–49 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eisen, J. S. Patterning motoneurons in the vertebrate nervous system. Trends Neurosci. 22, 321–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, H. & Tessier-Lavigne, M. En passant neurotrophic action of an intermediate axonal target in the developing mammalian CNS. Nature 401, 765–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Landmesser, L. in From Message to Mind: Directions in Developmental Neurobiology (eds. Easter, S. S. Jr., Barald, K. F. & Carlson, B. M.) 121–133 (Sinauer Associates, Sunderland, Massachusetts, 1988).

    Google Scholar 

  35. Heinrich, G. & Lum, T. Fish neurotrophins and Trk receptors. Int. J. Dev. Neurosci. 18, 1–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Weisblat, D. A. & Blair, S. S. Developmental indeterminacy in neurogenesis. Phil. Trans. R. Soc. Lond. B Biol. Sci. 312, 39–56 (1984).

    Article  Google Scholar 

  37. Keleher, G. P. & Stent, G. S. Cell position and developmental fate in leech embryogenesis. Proc. Natl. Acad. Sci. USA 87, 8457–8461 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, F. Z. & Weisblat, D. A. Cell fate determination in an annelid equivalence group. Development 122, 1839–1847 (1996).

    CAS  PubMed  Google Scholar 

  39. Priess, J. R. & Thomson, J. N. Cellular interactions in early C. elegans embryos. Cell 48, 241–250 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115–1123 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Pfaff, S. & Kintner, C. Neuronal diversification: development of motor neuron subtypes. Curr. Opin. Neurobiol. 8, 27–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Eisen, J. S. Zebrafish make a big splash. Cell 87, 969–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beattie, C. E., Raible, D. W., Henion, P. D. & Eisen, J. S. in Methods in Cell Biology: The Zebrafish, Genetics and Genomics Vol. 60 (eds. Detrich, W., Zon, L. & Westerfield, M.) 71–86 (Academic, San Diego, California, 1999).

    Google Scholar 

  45. Granato, M. et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    CAS  PubMed  Google Scholar 

  46. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Eisen, J. S., Pike, S. H. & Debu, B. The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions. Neuron 2, 1097–1104 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Eisen, J. S. & Pike, S. H. The spt-1 mutation alters the segmental arrangement and axonal development of identified neurons in the spinal cord of the embryonic zebrafish. Neuron 6, 767–776 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to B. Eisen. We thank M. Westerfield, C. Kimmel and D. Armstrong for discussions and comments on the manuscript and the University of Oregon Zebrafish Facility staff for animal husbandry. Supported by NIH NS23915 and HD22486. Renovation and expansion of the University of Oregon Zebrafish Facility supported by NIH RR11724, NSF 9602828, the M.J. Murdock Charitable Trust and the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Eisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisen, J., Melançon, E. Interactions with identified muscle cells break motoneuron equivalence in embryonic zebrafish. Nat Neurosci 4, 1065–1070 (2001). https://doi.org/10.1038/nn742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing