Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The physiological basis of attentional modulation in extrastriate visual areas

Abstract

Selective attention to color or motion enhances activity in specialized areas of extrastriate cortex, but mechanisms of attentional modulation remain unclear. By dissociating modulation of visually evoked transient activity from the baseline for a particular attentional set, human functional neuroimaging was used to investigate the physiological basis of such effects. Baseline activity in motion- and color-sensitive areas of extrastriate cortex was enhanced by selective attention to these attributes, even without moving or colored stimuli. Further, visually evoked responses increased along with baseline activity. These results are consistent with the hypothesis that attention modulates sensitivity of neuronal populations to inputs by changing background activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPM(Z) (threshold, p < 0.01, uncorrected) showing the main effect of the stimulus versus baseline over subjects, masked with the main effect from each individual subject (that is, a conjunction of significant effects over all three subjects) and rendered on a structural MRI scan.
Figure 2: Activity and responses in V5 as a function of attention in all subjects.
Figure 3: Activity and responses in V4 as a function of attention in all subjects.

Similar content being viewed by others

References

  1. Chawla, D., Phillips, J., Buechel, C., Edwards, R. & Friston, K. J. Speed-dependent motion-sensitive responses in V5: An fMRI study. Neuroimage 7, 86–96 (1998).

    Article  CAS  Google Scholar 

  2. Tootell, R. B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  3. Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993).

    Article  CAS  Google Scholar 

  4. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  Google Scholar 

  5. Livingstone, M. S. & Hubel, D. H. Segregation of form, color, movement and depth: anatomy physiology and perception. Science 240, 740–749 (1988).

    Article  CAS  Google Scholar 

  6. Dubner, R. & Zeki, S. M. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 35, 528–532 (1971).

    Article  CAS  Google Scholar 

  7. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  8. Ferrera, V. P., Rudolph, K. K. & Maunsell, J. H. Responses of neurons in the parietal and temporal visual pathways during a motion task. J. Neurosci. 14, 6171–6186 (1994).

    Article  CAS  Google Scholar 

  9. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996) .

    Article  CAS  Google Scholar 

  10. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Selective and divided attention during visual discriminations of shape, color and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).

    Article  CAS  Google Scholar 

  11. Buechel, C. et al. The functional anatomy of attention to visual motion: A functional MRI study. Brain 121, 1281–1294 (1998).

    Article  Google Scholar 

  12. O'Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. & Savoy, R. L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).

    Article  CAS  Google Scholar 

  13. Haenny, P. E. & Schiller, P. H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69, 225–244 (1988).

    Article  CAS  Google Scholar 

  14. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338–340 (1988).

    Article  CAS  Google Scholar 

  15. Rees, G., Frackowiak, R. & Frith, C. D. Two modulatory effects of attention that mediate object categorization in human cortex. Science 275, 835–838 (1997).

    Article  CAS  Google Scholar 

  16. Chawla, D., Lumer, E. D. & Friston, K. J. Relating macroscopic measures of brain activity to fast dynamic neuronal interactions. Neural Comput. (in press).

  17. Josephs, O., Turner, R. & Friston K. J. Event-related fMRI. Hum. Brain Map. 5, 243–248 (1997).

    Article  CAS  Google Scholar 

  18. Buckner, R. L. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 14878–14883 (1996).

    Article  CAS  Google Scholar 

  19. Tootell, R. B. et al. Functional analysis of V3a and related areas in human visual cortex. J. Neurosci. 17, 7060–7078 (1997).

    Article  CAS  Google Scholar 

  20. Chawla, D., Lumer, E. D. & Friston, K. J. The relationship between synchronization among neuronal populations and their mean activity levels. Neural Comput. 11, 1389–1411 (1999).

    Article  CAS  Google Scholar 

  21. Mangun, G. R. in Cognitive Electrophysiology (eds. Heinze, H. J., Munte, T. F. & Mangun, G. R.) 1–101 (Birkhauser, Boston, 1994).

    Google Scholar 

  22. Morecraft, R. J., Geula, C. & Mesulam, M. M. Architecture of connectivity within a cingulo-fronto-parietal neurocognitive network for directed attention. Arch. Neurol. 50, 279–284 (1993).

    Article  CAS  Google Scholar 

  23. Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

    Article  CAS  Google Scholar 

  24. Friston, K. J., Josephs, O., Rees, G. & Turner, R. Nonlinear event-related responses in fMRI. Magn. Reson. Med. 39, 41–52 (1998).

    Article  CAS  Google Scholar 

  25. Friston, K. J. et al. The spatial registration and normalisation of images. Hum. Brain Map. 3, 165–189 (1996).

    Article  Google Scholar 

  26. Talairach, J. & Tournoux, P. Coplanar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

Download references

Acknowledgements

We thank the radiographers at the Wellcome Department of Cognitive Neurology for their help. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, D., Rees, G. & Friston, K. The physiological basis of attentional modulation in extrastriate visual areas. Nat Neurosci 2, 671–676 (1999). https://doi.org/10.1038/10230

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing