Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural strength of visual attention gauged by motion adaptation

Abstract

Single-cell and neuroimaging studies reveal that attention focused on a visual object markedly amplifies neural activity produced by features of the attended object. In a psychophysical study, we found that visual attention could modulate the strength of weak motion signals to the point that the perceived direction of motion, putatively registered early in visual processing, was powerfully altered. This strong influence of attention on early motion processing, beside complementing neurophysiological evidence for attentional modulation early in the visual pathway, can be measured in terms of equivalent motion energy, and thus provides a useful metric for quantifying attention's effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bivectorial motion adaptation.
Figure 2: Results from experiment 1.
Figure 3: Experiment 2: motion aftereffect direction as a function of coherence strength of the attentional motions.
Figure 4: Experiment 3: motion aftereffect direction as a function of coherence strength of the attentional motion inserts, shown for active and passive conditions.

Similar content being viewed by others

References

  1. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of Macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  2. Martinez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).

    Article  CAS  Google Scholar 

  3. Rees, G., Frith, C. D. & Lavie, N. Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278, 1616–1619 (1997).

    Article  CAS  Google Scholar 

  4. Posner, M. I. & Gilbert, C. D. Attention and primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 2585 –2587 (1999).

    Article  CAS  Google Scholar 

  5. Roelfsema, P. R., Lamme, V. A. F. & Spekreijse, H. Object-based attention in the primary visual cortex of the Macaque monkey. Nature 395, 376– 381 (1998).

    Article  CAS  Google Scholar 

  6. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96 , 3314–3319 (1999).

    Article  CAS  Google Scholar 

  7. Watanabe et al. Task-dependent influences of attention on the activation of human primary visual cortex. Proc. Natl. Acad. Sci. USA 95, 11489–11492 (1998).

    Article  CAS  Google Scholar 

  8. Treue, S. & Trujillo, J. C. M. Feature-based attention influences motion processing gain in Macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  Google Scholar 

  9. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of single neurons in Macaque cortical area V4. J. Neurosci. 19, 431–441 ( 1999).

    Article  CAS  Google Scholar 

  10. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  11. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 ( 1993).

    Article  CAS  Google Scholar 

  12. Somers, D. C., Dale, A. M., Seiffert, A. E. & Tootell, R. B. H. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96 , 1663–1668 (1999).

    Article  CAS  Google Scholar 

  13. Chaudhuri, A. Modulation of the motion aftereffect by selective attention. Nature 344, 60–62 ( 1990).

    Article  CAS  Google Scholar 

  14. Lankheet, M. J. M. & Verstraten, F. A. J. Attentional modulation of adaptation to two-component transparent motion. Vision Res. 35, 1401–1412 (1995).

    Article  CAS  Google Scholar 

  15. Riggs, L. A. & Day, R. H. Visual aftereffects derived from inspection of orthogonally moving patterns Science 208, 416–418 (1980).

    Article  CAS  Google Scholar 

  16. Verstraten, F. A. J., Fredericksen, R. E. & van de Grind, W. A. The movement aftereffect of bi-vectorial transparent motion. Vision Res. 34, 349– 358 (1994).

    Article  CAS  Google Scholar 

  17. Shulman, G. L. Attentional effects on adaptation of rotary motion in the plane. Perception 22, 947–961 ( 1993).

    Article  CAS  Google Scholar 

  18. Raymond, J. E. & Isaak, M. Successive episodes produce direction contrast effects in motion perception. Vision Res. 38, 579–590 ( 1998).

    Article  CAS  Google Scholar 

  19. Spigel, I. M. The effects of differential post-exposure illumination on the decay of the movement after-effect. J. Psychol. 50, 209 –210 (1960).

    Article  Google Scholar 

  20. Verstraten, F. A. J., Fredericksen, R. E., van Wezel, R. J. A., Lankheet, M. J. M. & van de Grind, W. A. Recovery from adaptation for dynamic and static motion aftereffects: evidence for two mechanisms. Vision Res. 36, 421– 424 (1996).

    Article  CAS  Google Scholar 

  21. Lavie, N. Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 21, 451– 468 (1995).

    Article  CAS  Google Scholar 

  22. Lavie, N. & Tsal, Y. Perceptual load as a major determinant of the locus of selection in visual attention. Percept. Psychophys. 56, 183–197 ( 1994).

    Article  CAS  Google Scholar 

  23. Treisman, A. M. & Gelade, G. A feature integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  24. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  25. Seidemann, E. & Newsome, W. T. Effect of spatial attention on the responses of area MT neurons. J. Neurophysiol. 81, 1783–1794 (1999).

    Article  CAS  Google Scholar 

  26. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 443–446 (1997).

    Article  Google Scholar 

  27. Day, R. H. & Strelow, E. Reduction of disappearance of visual aftereffect of movement in the absence of patterned surround. Nature 230, 55–56 ( 1971).

    Article  CAS  Google Scholar 

  28. Watson, A. B. & Pelli, D. G. QUEST: A bayesian adaptive psychometric method. Percept. Psychophys. 33, 113– 120 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a Long-Term Fellowship from the Human Frontiers Science Programme to D.A., NIH grant EY077060 to R.B. and NIH Core Grant EYO8126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alais, D., Blake, R. Neural strength of visual attention gauged by motion adaptation. Nat Neurosci 2, 1015–1018 (1999). https://doi.org/10.1038/14814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/14814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing