Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity

Subjects

Abstract

Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine self-administration activates Activin receptor/Smad3 signaling.
Figure 2: Manipulating Activin receptor/Smad3 signaling alters drug-related responding.
Figure 3: Smad3 mediates cocaine-induced dendritic spine morphology of neurons in the NAc shell.

Similar content being viewed by others

References

  1. Robison, A.J. & Nestler, E.J. Nat. Rev. Neurosci. 12, 623–637 (2011).

    Article  CAS  Google Scholar 

  2. Massagué, J., Seoane, J. & Wotton, D. Genes Dev. 19, 2783–2810 (2005).

    Article  Google Scholar 

  3. Ageta, H. et al. Learn. Mem. 17, 176–185 (2010).

    Article  CAS  Google Scholar 

  4. Dow, A.L., Russell, D.S. & Duman, R.S. J. Neurosci. 25, 4908–4916 (2005).

    Article  CAS  Google Scholar 

  5. Gancarz-Kausch, A.M., Adank, D.N. & Dietz, D.M. Sci. Rep. 4, 6876 (2014).

    Article  CAS  Google Scholar 

  6. Piazza, P.V., Deroche-Gamonent, V., Rouge-Pont, F. & Le Moal, M. J. Neurosci. 20, 4226–4232 (2000).

    Article  CAS  Google Scholar 

  7. Liu, X. et al. Proc. Natl. Acad. Sci. USA 94, 10669–10674 (1997).

    Article  CAS  Google Scholar 

  8. Russo, S.J. et al. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  Google Scholar 

  9. Smith, A.C. et al. Nat. Neurosci. 17, 1655–1657 (2014).

    Article  CAS  Google Scholar 

  10. Massagué, J. & Wotton, D. EMBO J. 19, 1745–1754 (2000).

    Article  Google Scholar 

  11. Freeman, W.M. et al. BMC Neurosci. 11, 29 (2010).

    Article  Google Scholar 

  12. Pulipparacharuvil, S. et al. Neuron 59, 621–633 (2008).

    Article  CAS  Google Scholar 

  13. Schumann, J. & Yaka, R. J. Neurosci. 29, 6955–6963 (2009).

    Article  CAS  Google Scholar 

  14. Reissner, K.J. et al. J. Neurosci. 31, 5648–5658 (2011).

    Article  CAS  Google Scholar 

  15. Shen, H.W. et al. J. Neurosci. 29, 2876–2884 (2009).

    Article  CAS  Google Scholar 

  16. Lee, B.R. et al. Nat. Neurosci. 16, 1644–1651 (2013).

    Article  CAS  Google Scholar 

  17. Kasanetz, F. et al. Science 328, 1709–1712 (2010).

    Article  CAS  Google Scholar 

  18. Ma, Y.Y. et al. Neuron 83, 1453–1467 (2014).

    Article  CAS  Google Scholar 

  19. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  Google Scholar 

  20. Lobo, M.K., Nestler, E.J. & Covington, H.E. III. Biol. Psychiatry 71, 1068–1074 (2012).

    Article  Google Scholar 

  21. Scobie, K.N. et al. Proc. Natl. Acad. Sci. USA 111, 2005–2010 (2014).

    Article  CAS  Google Scholar 

  22. Gancarz-Kausch, A.M. et al. PLoS ONE 8, e83834 (2013).

    Article  Google Scholar 

  23. Dietz, D.M. et al. Nat. Neurosci. 15, 891–896 (2012).

    Article  CAS  Google Scholar 

  24. Chandra, R. et al. Front. Mol. Neurosci. 6, 13 (2013).

    Article  CAS  Google Scholar 

  25. Gancarz, A.M., Kausch, M.A., Lloyd, D.R. & Richards, J.B. Psychopharmacology (Berl.) 222, 215–223 (2012).

    Article  CAS  Google Scholar 

  26. Mantsch, J.R. et al. Psychopharmacology (Berl.) 192, 581–591 (2007).

    Article  CAS  Google Scholar 

  27. Hiranita, T., Soto, P.L., Newman, A.H. & Katz, J.L. J. Pharmacol. Exp. Ther. 329, 677–686 (2009).

    Article  CAS  Google Scholar 

  28. Hiranita, T., Soto, P.L., Tanda, G. & Katz, J.L. J. Pharmacol. Exp. Ther. 332, 515–524 (2010).

    Article  CAS  Google Scholar 

  29. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elselvier, 2009).

  30. Ishikawa, T., Mizunoya, W., Shibakusa, T., Inoue, K. & Fushiki, T. Am. J. Physiol. Endocrinol. Metab. 291, E1151–E1159 (2006).

    Article  CAS  Google Scholar 

  31. Grimm, J.W., Hope, B.T., Wise, R.A. & Shaham, Y. Nature 412, 141–142 (2001).

    Article  CAS  Google Scholar 

  32. Chipuk, J.E. et al. J. Biol. Chem. 277, 1240–1248 (2002).

    Article  CAS  Google Scholar 

  33. Wang, H., Song, K., Sponseller, T.L. & Danielpour, D. J. Biol. Chem. 280, 5154–5162 (2005).

    Article  CAS  Google Scholar 

  34. Neve, R.L., Neve, K.A., Nestler, E.J. & Carlezon, W.A. Jr. Biotechniques 39, 381–391 (2005).

    Article  CAS  Google Scholar 

  35. Robison, A.J. et al. J. Neurosci. 33, 4295–4307 (2013).

    Article  CAS  Google Scholar 

  36. Ferguson, D. et al. J. Neurosci. 33, 16088–16098 (2013).

    Article  CAS  Google Scholar 

  37. Maze, I. et al. Science 327, 213–216 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Adank for her technical assistance with the self-administration, and J.-X. Li, D. Thorn and J. Siemian for their assistance in conducting the food reinforcement experiments. We thank F. Sim for his technical expertise in microscopy. We thank J.-J. Lebrun (McGill University) for the Smad3 constructs. We acknowledge the assistance of the Confocal Microscope and Flow Cytometry Facility in the School of Medicine and Biomedical Sciences, University at Buffalo. The cocaine used in these experiments was a gift from the National Institute on Drug Abuse. This work was supported by grants R01DA037257 (D.M.D.), NIAAA T-32-AA007583 and GM09545902.

Author information

Authors and Affiliations

Authors

Contributions

A.M.G., Z.-J.W., G.L.S., K.M.B., L.E.M., A.C. and J.A.M. performed behavioral experiments. A.M.G., Z.-J.W., M.S.H. and G.L.S. performed all western blots, mRNA and ChIP experiments. A.M.G. and D.D.-W. conducted dendritic spine experiments. R.L.N. generated and provided HSV constructs. A.M.G., K.C.D. and D.M.D. designed experiments, analyzed data and wrote the manuscript. All of the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to David M Dietz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Experimental schematics

(a) Timeline of behavioral testing and location of nucleus accumbens tissue punches. Timeline of behavioral testing for (b) within-session dose-response, (c) drug-induced reinstatement, and (d) food reinforcement experiments.

Supplementary Figure 2 Activin-Receptor/Smad3 signaling in CPu and NAc core

(a) Relative AcvR2a protein expression [t(11) = 0.4485, P = 0.66, n = 6-7/group], and (b) relative ratio of phosphorylated (p) to total Smad3 protein expression [t(12) = 1.501, P = 0.1, n = 6-8/group] in the caudate putamen (CPu) after 7WD. (c) Relative AcvR2a protein expression [t(10) = 2.801, P = 0.01, n = 6/group], and (d) relative ratio of phosphorylated (p) to total Smad3 protein expression [t(8) = 1.001, P = 0.3, n = 5/group] in nucleus accumbens core (NAc core) after 7WD. Data are expressed as mean (± SEM), *P< 0.05 vs. saline.

Supplementary Figure 3 Activin-receptor/Smad3 signaling following acute cocaine or re-exposure to cocaine self-administration

(a) AcvR2a [t(9) = 0.5546, P = 0.59, n = 5-6/group] and (b) p-Smad3/Smad3 [t(9) = 0.4629, P = 0.65, n= 5-6/group] protein expression in the NAc following acute withdrawal to cocaine (1 h after last self-administration session). (c) Timeline of behavioral testing for re-exposure to self-administration. (d) AcvR2a [t(10) = 2.100, P = 0.06, n = 6/group] and (e) p-Smad3/Smad3 [t(9) = 2.745, P = 0.02, n = 5-6/group] protein expression in the NAc following re-exposure to cocaine self-administration following 7 WD. Data are expressed as mean (± SEM), *P< 0.05 vs. saline.

Supplementary Figure 4 Food reinforcement and locomotor activity

Number of reinforcers earned during food reinforcement. There were no differences in the number of reinforcers earned following (a) intra-accumbal microinjections of vehicle, Activin-receptor antagonist (SB-431542, [t(12) = 0.00, P> 0.999, n = 7/group]), (c) Activin A [t(12) = 0.2972, P = 0.7714, n = 7/group], or (e) HSV-GFP, dominant-negative HSV-dnSmad3 or wild-type HSV-Smad3 in the nucleus accumbens [F(2, 19) = 0.5923, P = 0.56, n = 7-8/group]. Total distance traveled in 60 min in a novel environment following either (b) intra-accumbal microinjections of vehicle, Activin-receptor antagonist (SB-431542, [t(12) = 0.4833, P = 0.59, n = 7/group]), (d) Activin A [t(14) = 1.093, P = 0.98, n = 8/group], or (f) HSV-GFP, dominant-negative HSV-dnSmad3 or wild-type HSV-Smad3 in the nucleus accumbens [F(2, 19) = 0.4405, P = 0.65, n = 7-8/group], there were no differences compared to respective controls. Data are expressed as mean (± SEM).

Supplementary Figure 5 In vivo validation of viral-mediated Smad3 overexpression.

(a) Representative Western blots showing phosphorylated (p) and total Smad3 protein levels in the nucleus accumbens of rats following herpes simplex virus-mediated overexpression of dominant-negative (dn) and wild-type (wt) Smad3 constructs, or GFP control. Overexpression of wtSmad3 increased the expression and phosphorylation of Smad3, whereas overexpression of dnSmad3 resulted in a moderate increase in the amount of total Smad3 protein, with no change in the level of phosphorylation. (b) Anatomical placement of viral infection and representative imagesof HSV-infected area in the NAc shell adjacent to the anterior commisure (AC; 4x; scale bar = 100 μm), and medium spiny neuron (20x; scale bar = 50 μm).

Supplementary Figure 6 Full length blots for figure 1 (c&d).

Samples were loaded on a 10% SDS gel and then cut and blotted for Activin-receptor 2a following (a) 1 or (b) 7 d withdrawal from cocaine or saline, or p-Smad3/Smad3 following (c) 1 or (d) 7 d withdrawal from cocaine or saline.

Supplementary Figure 7 Full length blots for supplemental figure 2&3.

Samples were loaded on a 10% SDS gel and then cut and blotted for Activin-receptor 2a and p-Smad3/Smad3 in the (a) CPu or (b) NAc Core following 7 d withdrawal, (c) 1 h after the last self-administration session, or (d) following re-exposure to saline or cocaine self-administration.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 618 kb)

Supplementary Methods Checklist (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gancarz, A., Wang, ZJ., Schroeder, G. et al. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity. Nat Neurosci 18, 959–961 (2015). https://doi.org/10.1038/nn.4036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing