Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators

Abstract

The slow (<1 Hz) rhythm, the most important electroencephalogram (EEG) signature of non–rapid eye movement (NREM) sleep, is generally viewed as originating exclusively from neocortical networks. Here we argue that the full manifestation of this fundamental sleep oscillation in a corticothalamic module requires the dynamic interaction of three cardinal oscillators: one predominantly synaptically based cortical oscillator and two intrinsic, conditional thalamic oscillators. The functional implications of this hypothesis are discussed in relation to other EEG features of NREM sleep, with respect to coordinating activities in local and distant neuronal assemblies and in the context of facilitating cellular and network plasticity during slow-wave sleep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The EEG slow (<1 Hz) rhythm and its cellular counterpart in cortical and thalamic neurons.
Figure 2: The slow (<1 Hz) oscillation in cortical and thalamic neurons in vivo and its reproduction in vitro.
Figure 3: The frequency of the EEG slow rhythm at different depths of sleep and anesthesia matches the voltage-dependence of the slow oscillation frequency in thalamocortical neurons.
Figure 4: The start of the thalamocortical neuron UP state firing precedes that of the cortical UP states.
Figure 5: Synchronized thalamic slow oscillation during natural sleep and in a brain slice.
Figure 6: Schematic flow diagram of the dialog between cortical and thalamic oscillators that underlies the slow (<1 Hz) rhythm in a thalamocortical module.

Similar content being viewed by others

References

  1. Metherate, R., Cox, C.L. & Ashe, J.H. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J. Neurosci. 12, 4701–4711 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steriade, M., Nuñez, A. & Amzica, F. A novel slow (&lt;1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3253–3265 (1993).

    Google Scholar 

  3. Steriade, M., Nuñez, A. & Amzica, F. Intracellular analysis between slow (&lt;1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13, 3266–3283 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Steriade, M., Contreras, D., Curró Dossi, R. & Nuñez, A. The slow (&lt;1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13, 3284–3299 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Achermann, P. & Borbély, A. Low-frequency (&lt;1 Hz) oscillations in the human sleep EEG. Neuroscience 81, 213–222 (1997).

    CAS  PubMed  Google Scholar 

  6. Cash, S.S. et al. The human K-complex represents an isolated cortical down-state. Science 324, 1084–1087 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenberg, D.S., Houweling, A.R. & Kerr, J.N.D. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751 (2008).

    CAS  PubMed  Google Scholar 

  8. Kerr, J.N.D., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Luczak, A., Barthó, P., Marguet, S.L., Buzsáki, G. & Harris, K.D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl. Acad. Sci. USA 104, 347–352 (2007).

    CAS  PubMed  Google Scholar 

  10. Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Petersen, C.C.H., Hahn, T.T.G., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. USA 100, 13638–13643 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Puig, M.V., Ushimaru, M. & Kawaguchi, Y. Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proc. Natl. Acad. Sci. USA 105, 8428–8433 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon, N.R., Kemp, B., Manshanden, I. & Lopes da Silva, F.H. Whole-head measures of sleep from MEG signals and the ubiquitous “slow oscillation”. Sleep Res. Online 5, 105–113 (2003).

    Google Scholar 

  14. Volgushev, M., Chauvette, S., Mukovski, M. & Timofeev, I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep. J. Neurosci. 26, 5665–5672 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Blethyn, K.L., Hughes, S.W., Tóth, T.I., Cope, D.W. & Crunelli, V. Neuronal basis of the slow (&lt;1Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J. Neurosci. 26, 2474–2486 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003).

    CAS  PubMed  Google Scholar 

  17. Dang-Vu, T.T. et al. Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. USA 105, 15160–15165 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Hughes, S.W., Cope, D.W., Blethyn, K.L. & Crunelli, V. Cellular mechanisms of the slow (&lt;1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33, 947–958 (2002).

    CAS  PubMed  Google Scholar 

  19. MacLean, J.N., Watson, B.O., Aaron, G.B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005).

    CAS  PubMed  Google Scholar 

  20. Rigas, P. & Castro-Alamancos, M.A. Thalamocortical Up states: different effects of intrinsic and extrinsic cortical inputs on persistent activity. J. Neurosci. 27, 4261–4272 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reig, R., Gallego, R., Nowak, L.G. & Sanchez-Vives, M.V. Impact of cortical network activity on short-term synaptic depression. Cereb. Cortex 16, 688–695 (2006).

    PubMed  Google Scholar 

  22. Sanchez-Vives, M.V. & McCormick, D.A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    CAS  PubMed  Google Scholar 

  23. Shu, Y., Hasenstaub, A. & McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    CAS  PubMed  Google Scholar 

  24. Vyazovskiy, V.V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).

    CAS  PubMed  Google Scholar 

  25. Wolansky, T., Clement, E.A., Peters, S.R., Palczak, M.A. & Dickson, C.T. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J. Neurosci. 26, 6213–6229 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. De Gennaro, L. et al. Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep. PLoS One 3, e2483 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Huber, R., Ghilardi, M.F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    CAS  PubMed  Google Scholar 

  28. Huber, R. et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci. 9, 1169–1176 (2006).

    CAS  PubMed  Google Scholar 

  29. Ji, D. & Wilson, M.A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    CAS  PubMed  Google Scholar 

  30. Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    CAS  PubMed  Google Scholar 

  31. Massimini, M., Rosanova, M. & Mariotti, M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J. Neurophysiol. 89, 1205–1213 (2003).

    PubMed  Google Scholar 

  32. Mölle, M., Marshall, L., Gais, S. & Born, J. Learning increases human electro-encephalographic coherence during subsequent slow sleep oscillations. Proc. Natl. Acad. Sci. USA 101, 13963–13968 (2004).

    PubMed  PubMed Central  Google Scholar 

  33. Peigneux, P. et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44, 535–545 (2004).

    CAS  PubMed  Google Scholar 

  34. Contreras, D. & Steriade, M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15, 604–622 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Doi, A. et al. Slow oscillation of membrane currents mediated by glutamatergic inputs of rat somatosensory cortical neurons: in vivo patch-clamp analysis. Eur. J. Neurosci. 26, 2565–2575 (2007).

    PubMed  Google Scholar 

  36. Hughes, S.W., Cope, D.W., Tóth, T.I., Williams, S.R. & Crunelli, V. All thalamocortical neurones possess a T-type Ca2+ 'window' current that enables the expression of bistability-mediated activities. J. Physiol. (Lond.) 517, 805–815 (1999).

    CAS  Google Scholar 

  37. Zhu, L. et al. Nucleus- and species-specific properties of the slow (&lt;1 Hz) sleep oscillation in thalamocortical neurons. Neuroscience 141, 621–636 (2006).

    CAS  PubMed  Google Scholar 

  38. Amzica, F. & Steriade, M. The functional significance of K-complexes. Sleep Med. Rev. 6, 139–149 (2002).

    PubMed  Google Scholar 

  39. De Gennaro, L. & Ferrara, M. Sleep spindles: an overview. Sleep Med. Rev. 7, 423–440 (2003).

    PubMed  Google Scholar 

  40. Hoffman, K.L. et al. The upshot of Up states in the neocortex: from slow oscillations to memory formation. J. Neurosci. 27, 11838–11841 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehta, M.R. Cortico-hippocampal interation during up-down states and memory consolidation. Nat. Neurosci. 10, 13–15 (2007).

    CAS  PubMed  Google Scholar 

  42. Tononi, G., Massimini, M. & Riedner, B.A. Sleepy dialogues between cortex and hippocampus: who talks to whom? Neuron 52, 748–749 (2006).

    CAS  PubMed  Google Scholar 

  43. Yuste, R., MacLean, J.N., Smith, J. & Lansner, A. The cortex as a central pattern generator. Nat. Rev. Neurosci. 6, 477–483 (2005).

    CAS  PubMed  Google Scholar 

  44. Simon, N.R., Manshanden, I. & Lopes da Silva, F.H.A. MEG study of sleep. Brain Res. 860, 64–76 (2000).

    CAS  PubMed  Google Scholar 

  45. Amzica, F. & Steriade, M. The K-complex: its slow rhythmicity and relation to delta waves. Neurology 49, 952–959 (1997).

    CAS  PubMed  Google Scholar 

  46. Mölle, M., Marshall, L., Gais, S. & Born, J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J. Neurosci. 22, 10941–10947 (2002).

    PubMed  PubMed Central  Google Scholar 

  47. Amzica, F. & Steriade, M. Cellular substrates and laminar profile of sleep K-complex. Neuroscience 82, 671–686 (1998).

    CAS  PubMed  Google Scholar 

  48. Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    CAS  PubMed  Google Scholar 

  50. Krueger, J.M. et al. Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 9, 910–919 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Siegel, J.M. Do all animals sleep? Trends Neurosci. 31, 208–213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bokor, H. et al. Selective GABAergic control of higher-order thalamic relays. Neuron 45, 929–940 (2005).

    CAS  PubMed  Google Scholar 

  53. Contreras, D. & Steriade, M. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J. Physiol. (Lond.) 490, 159–179 (1996).

    CAS  Google Scholar 

  54. Contreras, D. & Steriade, M. Synchronization of low-frequency rhythms in corticothalamic networks. Neuroscience 76, 11–24 (1997).

    CAS  PubMed  Google Scholar 

  55. Contreras, D. & Steriade, M. State-dependent fluctuations of low-frequency rhythms in corticothalamic networks. Neuroscience 76, 25–38 (1997).

    CAS  PubMed  Google Scholar 

  56. Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rudolph, M., Pospischil, M., Timofeev, I. & Destexhe, A. Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J. Neurosci. 27, 5280–5290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Steriade, M. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb. Cortex 7, 583–604 (1997).

    CAS  PubMed  Google Scholar 

  59. Steriade, M. Cellular substrates of brain rhythms. in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (eds, E. Niedermeyer & F. Lopes da Silva) 27–62 (Williams and Wilkins, Baltimore, 1993).

  60. Timofeev, I. & Steriade, M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168 (1996).

    CAS  PubMed  Google Scholar 

  61. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J. & Steriade, M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).

    CAS  PubMed  Google Scholar 

  62. Amzica, F. & Steriade, M. Disconnection of synaptic linkages disrupts synchronization of a slow oscillation. J. Neurosci. 15, 4658–4677 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T.J. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Compte, A., Sanchez-Vives, M.V., McCormick, D.A. & Wang, X.-J. Cellular and network mechanisms of slow oscillatory activity (&lt;1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003).

    PubMed  Google Scholar 

  65. Hill, S. & Tononi, G. Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698 (2005).

    PubMed  Google Scholar 

  66. Le Bon-Jego, M. & Yuste, R. Persistently active, pacemaker-like neurons in neocortex. Front. Neurosci. 1, 123–129 (2007).

    PubMed  PubMed Central  Google Scholar 

  67. Cunningham, M.O. et al. Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. USA 103, 5597–5601 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Steriade, M., Timofeev, I., Grenier, F. & Dürmüller, N. Role of thalamic and cortical neurons in augmenting responses and self-sustained activity: dual intracellular recordings in vivo. J. Neurosci. 18, 6425–6443 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Swadlow, H.A. & Gusev, A.G. The impact of 'bursting' thalamic impulses at a neocortical synapse. Nat. Neurosci. 4, 402–408 (2001).

    CAS  PubMed  Google Scholar 

  70. Williams, S.R., Turner, J.P., Tóth, T.I., Hughes, S.W. & Crunelli, V. The 'window' component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J. Physiol. (Lond.) 505, 689–705 (1997).

    CAS  Google Scholar 

  71. Sherman, S.M. & Guillery, R.W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).

    CAS  PubMed  Google Scholar 

  72. Llinás, R.R. & Steriade, M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–3308 (2006).

    PubMed  Google Scholar 

  73. Godwin, D.W., Van Horn, S.C., Sesma, M., Romano, C. & Sherman, S.M. Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J. Neurosci. 16, 8181–8192 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Turner, J.P. & Salt, T.E. Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. J. Physiol. (Lond.) 510, 829–843 (1998).

    CAS  Google Scholar 

  75. Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137, 1087–1106 (2006).

    CAS  PubMed  Google Scholar 

  76. Hughes, S.W. et al. Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. Neuron 42, 253–268 (2004).

    CAS  PubMed  Google Scholar 

  77. Cox, C.L., Reichova, I. & Sherman, S.M. Functional synaptic contacts by intranuclear axon collaterals of thalamic relay neurons. J. Neurosci. 23, 7642–7646 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cox, C.L. & Sherman, S.M. Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron. 27, 597–610 (2000).

    CAS  PubMed  Google Scholar 

  79. Soltesz, I. & Crunelli, V. A role for low-frequency, rhythmic synaptic potentials in the synchronization of cat thalamocortical cells. J. Physiol. (Lond.) 457, 257–276 (1992).

    CAS  Google Scholar 

  80. Lõrincz, M.L., Kékesi, K.A., Juhász, G., Crunelli, V. & Hughes, S.W. Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63, 683–696 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Hughes, S.W., Blethyn, K.L., Cope, D.W. & Crunelli, V. Properties and origin of spikelets in thalamocortical neurones in vitro. Neuroscience 110, 395–401 (2002).

    CAS  PubMed  Google Scholar 

  82. Tóth, T.I., Hughes, S.W. & Crunelli, V. Analysis and biophysical interpretation of bistable behaviour in thalamocortical neurons. Neuroscience 87, 519–523 (1998).

    PubMed  Google Scholar 

  83. Crunelli, V., Tóth, T.I., Cope, D.W., Blethyn, K. & Hughes, S.W. The 'window' T-type calcium current in brain dynamics of different behavioral states. J. Physiol. (Lond.) 562, 121–129 (2005).

    CAS  Google Scholar 

  84. Crunelli, V., Cope, D.W. & Hughes, S.W. Thalamic T-type Ca2+ channels and NREM sleep. Cell Calcium 40, 175–190 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McCormick, D.A. & von Krosigk, M. Corticothalamic activation modulates thalamic firing through glutamate 'metabotropic' receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Turner, J.P. & Salt, T.E. Synaptic activation of the group I metabotropic glutamate receptor mGlu1 on the thalamocortical neurons of the rat dorsal lateral geniculate nucleus in vitro. Neuroscience 100, 493–505 (2000).

    CAS  PubMed  Google Scholar 

  87. Beierlein, M., Fall, C.P., Rinzel, J. & Yuste, R. Thalamocortical bursts trigger recurrent activity in neocortical networks: layer 4 as a frequency-dependent gate. J. Neurosci. 22, 9885–9894 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. McCormick, D.A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992).

    CAS  PubMed  Google Scholar 

  89. Destexhe, A., Hughes, S.W., Rudolph, M. & Crunelli, V. Are corticothalamic 'up' states fragments of wakefulness? Trends Neurosci. 30, 334–342 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Isomura, Y. et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52, 871–882 (2006).

    CAS  PubMed  Google Scholar 

  91. Lee, A.K. & Wilson, M.A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    CAS  PubMed  Google Scholar 

  92. Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19, 9497–9507 (1999).

    PubMed  PubMed Central  Google Scholar 

  93. Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. USA 100, 2065–2069 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jones, E.G. The Thalamus (Plenum Press, New York, 2008).

  95. Cueni, L. et al. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat. Neurosci. 11, 683–692 (2008).

    CAS  PubMed  Google Scholar 

  96. Czarnecki, A., Birtoli, B. & Ulrich, D. Cellular mechanisms of burst firing–mediated long-term depression in rat neocortical pyramidal cells. J. Physiol. (Lond.) 578, 471–479 (2007).

    CAS  Google Scholar 

  97. Stern, E.A., Kincaid, A.E. & Wilson, C.J. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77, 1697–1715 (1997).

    CAS  PubMed  Google Scholar 

  98. Mena-Segovia, J., Sims, H.M., Magill, P.J. & Bolam, J.P. Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J. Physiol. (Lond.) 586, 2947–2960 (2008).

    CAS  Google Scholar 

  99. Jones, B.E. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 26, 578–586 (2005).

    CAS  PubMed  Google Scholar 

  100. Steriade, M., Contreras, D., Amzica, F. & Timofeev, I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J. Neurosci. 16, 2788–2808 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work in this area is supported by the Wellcome Trust (grants 71436, 78311 and 78403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Crunelli.

Supplementary information

Supplementary Text and Figures

Supplementary Note (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crunelli, V., Hughes, S. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13, 9–17 (2010). https://doi.org/10.1038/nn.2445

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing