Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury

Abstract

A principal objective of spinal cord injury (SCI) research is the restoration of axonal connectivity to denervated targets. We tested the hypothesis that chemotropic mechanisms would guide regenerating spinal cord axons to appropriate brainstem targets. We subjected rats to cervical level 1 (C1) lesions and combinatorial treatments to elicit axonal bridging into and beyond lesion sites. Lentiviral vectors expressing neurotrophin-3 (NT-3) were then injected into an appropriate brainstem target, the nucleus gracilis, and an inappropriate target, the reticular formation. NT-3 expression in the correct target led to reinnervation of the nucleus gracilis in a dose-related fashion, whereas NT-3 expression in the reticular formation led to mistargeting of regenerating axons. Axons regenerating into the nucleus gracilis formed axodendritic synapses containing rounded vesicles, reflective of pre-injury synaptic architecture. Thus, we report for the first time, to the best of our knowledge, the reinnervation of brainstem targets after SCI and an essential role for chemotropic axon guidance in target selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental procedure.
Figure 2: Transected ascending sensory axons extend toward Lenti–NT-3–transduced cells in the denervated nucleus gracilis.
Figure 3: Comparison of axon growth into the nucleus gracilis after viral GFP or NT-3 delivery with or without conditioning lesions.
Figure 4: Quantification of CTB-labeled axons and reporter gene expression in the nucleus gracilis.
Figure 5: Lesioned axons regenerate to ectopic regions when NT-3 is ectopically expressed.
Figure 6: Regenerating axons form new synapses in the denervated nucleus gracilis.
Figure 7: Electrophysiological responses in the nucleus gracilis evoked by sciatic nerve stimulation in intact and C1-injured rats.

Similar content being viewed by others

References

  1. McQuarrie, I.G., Grafstein, B. & Gershon, M.D. Axonal regeneration in the rat sciatic nerve: effect of a conditioning lesion and of dbcAMP. Brain Res. 132, 443–453 (1977).

    Article  CAS  Google Scholar 

  2. Schreyer, D.J. & Skene, J.H. Injury-associated induction of GAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J. Neurobiol. 24, 959–970 (1993).

    Article  CAS  Google Scholar 

  3. Chen, D.F., Schneider, G.E., Martinou, J.C. & Tonegawa, S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385, 434–439 (1997).

    Article  CAS  Google Scholar 

  4. Goldberg, J.L., Klassen, M.P., Hua, Y. & Barres, B.A. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860–1864 (2002).

    Article  CAS  Google Scholar 

  5. Yiu, G. & He, Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7, 617–627 (2006).

    Article  CAS  Google Scholar 

  6. Schnell, L. & Schwab, M.E. Axonal regeneration in the rat spinal cord produced by antibody against myelin-assicated neurite growth inhibitors. Nature 343, 269–272 (1990).

    Article  CAS  Google Scholar 

  7. Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  Google Scholar 

  8. Lu, P., Yang, H., Jones, L.L., Filbin, M.T. & Tuszynski, M.H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 24, 6402–6409 (2004).

    Article  CAS  Google Scholar 

  9. Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    Article  CAS  Google Scholar 

  10. Taylor, L., Jones, L., Tuszynski, M.H. & Blesch, A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci. 26, 9713–9721 (2006).

    Article  CAS  Google Scholar 

  11. Thuret, S., Moon, L.D. & Gage, F.H. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 7, 628–643 (2006).

    Article  CAS  Google Scholar 

  12. Hofstetter, C.P. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. USA 99, 2199–2204 (2002).

    Article  CAS  Google Scholar 

  13. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002).

    Article  CAS  Google Scholar 

  14. Richardson, P.M. & Issa, V.M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984).

    Article  CAS  Google Scholar 

  15. Neumann, S. & Woolf, C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    Article  CAS  Google Scholar 

  16. Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A.I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002).

    Article  CAS  Google Scholar 

  17. Nieuwenhuys, R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.) 190, 307–337 (1994).

    Article  CAS  Google Scholar 

  18. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251 (2002).

    Article  CAS  Google Scholar 

  19. Peters, A. & Palay, S.L. The morphology of synapses. J. Neurocytol. 25, 687–700 (1996).

    Article  CAS  Google Scholar 

  20. De Biasi, S., Vitellaro-Zuccarello, L., Bernardi, P., Valtschanoff, J.G. & Weinberg, R.J. Ultrastructural and immunocytochemical characterization of primary afferent terminals in the rat cuneate nucleus. J. Comp. Neurol. 347, 275–287 (1994).

    Article  CAS  Google Scholar 

  21. Hwang, S.J., Rustioni, A. & Valtschanoff, J.G. Kainate receptors in primary afferents to the rat gracile nucleus. Neurosci. Lett. 312, 137–140 (2001).

    Article  CAS  Google Scholar 

  22. Rustioni, A. & Sotelo, C. Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents. J. Comp. Neurol. 155, 441–468 (1974).

    Article  CAS  Google Scholar 

  23. Kohama, I. et al. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J. Neurosci. 21, 944–950 (2001).

    Article  CAS  Google Scholar 

  24. Tan, A.M., Petruska, J.C., Mendell, L.M. & Levine, J.M. Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state. Exp. Neurol. 206, 257–268 (2007).

    Article  CAS  Google Scholar 

  25. Letourneau, P.C. Chemotaxic response of nerve fiber elongation to nerve growth factor. Dev. Biol. 66, 183–196 (1978).

    Article  CAS  Google Scholar 

  26. Cabelli, R.J., Hohn, A. & Shatz, C.J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662–1666 (1995).

    Article  CAS  Google Scholar 

  27. McAllister, A.K., Katz, L.C. & Lo, D.C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).

    Article  CAS  Google Scholar 

  28. Ma, L. et al. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron 36, 623–634 (2002).

    Article  CAS  Google Scholar 

  29. Genç, B., Ozdinler, P.H., Mendoza, A.E. & Erzurumlu, R.S. A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS Biol. 2, e403 (2004).

    Article  Google Scholar 

  30. Houle, J.D. et al. Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci. 26, 7405–7415 (2006).

    Article  CAS  Google Scholar 

  31. Gundersen, R.W. & Barrett, J.N. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J. Cell Biol. 87, 546–554 (1980).

    Article  CAS  Google Scholar 

  32. Arévalo, J.C. & Chao, M.V. Axonal growth: where neurotrophins meet Wnts. Curr. Opin. Cell Biol. 17, 112–115 (2005).

    Article  Google Scholar 

  33. Markus, A., Patel, T.D. & Snider, W.D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531 (2002).

    Article  CAS  Google Scholar 

  34. Cohen-Cory, S. & Fraser, S. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature 378, 192–196 (1995).

    Article  CAS  Google Scholar 

  35. Zhang, L., Schmidt, R.E., Yan, Q. & Snider, W.D. NGF and NT-3 have differing effects on the growth of dorsal root axons in developing mammalian spinal cord. J. Neurosci. 14, 5187–5201 (1994).

    Article  CAS  Google Scholar 

  36. Postigo, A. et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 16, 633–645 (2002).

    Article  CAS  Google Scholar 

  37. Tessarollo, L., Coppola, V. & Fritzsch, B. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J. Neurosci. 24, 2575–2584 (2004).

    Article  CAS  Google Scholar 

  38. Vidal-Sanz, M., Bray, G.M., Villegas-Perez, M.P., Thanos, S. & Aguayo, A. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7, 2894–2909 (1987).

    Article  CAS  Google Scholar 

  39. Tuszynski, M.H. & Gage, F.H. Bridging grafts and transient NGF infusions promote long-term CNS neuronal rescue and partial functional recovery. Proc. Natl. Acad. Sci. USA 92, 4621–4625 (1995).

    Article  CAS  Google Scholar 

  40. Moon, L.D., Asher, R.A., Rhodes, K.E. & Fawcett, J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 4, 465–466 (2001).

    Article  CAS  Google Scholar 

  41. Keirstead, S.A., Rasminsky, M., Fukuda, Y., Carter, D. & Aguayo, A.J. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science 246, 255–257 (1989).

    Article  CAS  Google Scholar 

  42. Ramer, M.S. & Bisby, M.A. Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: distinct mechanisms revealed by anti-NGF treatment. Eur. J. Neurosci. 11, 837–846 (1999).

    Article  CAS  Google Scholar 

  43. Zhou, X.F., Deng, Y.S., Xian, C.J. & Zhong, J.H. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur. J. Neurosci. 12, 100–105 (2000).

    Article  CAS  Google Scholar 

  44. Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).

    Article  CAS  Google Scholar 

  45. Steward, O., Zheng, B. & Tessier-Lavigne, M. False resurrections: distinguishing regenerated from spared axons in the injured central nervous system. J. Comp. Neurol. 459, 1–8 (2003).

    Article  Google Scholar 

  46. LaMotte, C.C., Kapadia, S.E. & Shapiro, C.M. Central projections of the sciatic, saphenous, median and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J. Comp. Neurol. 311, 546–562 (1991).

    Article  CAS  Google Scholar 

  47. Totoiu, M.O. & Keirstead, H.S. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol. 486, 373–383 (2005).

    Article  Google Scholar 

  48. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  49. Azizi, S.A., Stokes, D., Augelli, B.J., DiGirolamo, C. & Prockop, D.J. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95, 3908–3913 (1998).

    Article  CAS  Google Scholar 

  50. Havton, L.A. & Broman, J. Systemic administration of cholera toxin B subunit conjugated to horseradish peroxidase in the adult rat labels preganglionic autonomic neurons, motoneurons, and select primary afferents for light and electron microscopic studies. J. Neurosci. Methods 149, 101–109 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Ma and B. Sjöstrand for technical assistance and J. Silver for helpful suggestions. This work was supported by the US National Institutes of Health (NS09881 and NS54883), the Veterans Administration, the International Spinal Research Trust, Wings for Life, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Bernard and Anne Spitzer Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

L.T.A. designed the experiments, performed surgery, labeled tissue, analyzed data and wrote the manuscript. L.A.H. performed ultrastructural studies and analysis. J.M.C. carried out electrophysiological analyses. E.R.H. examined the myelination state of regenerated axons. A.B. and M.H.T. designed experiments, performed surgery, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Armin Blesch or Mark H Tuszynski.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 1667 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alto, L., Havton, L., Conner, J. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12, 1106–1113 (2009). https://doi.org/10.1038/nn.2365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing