Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quo vadis, hair cell regeneration?

Abstract

Hearing loss is a global health problem with profound socioeconomic impact. We contend that acquired hearing loss is mainly a modern disorder caused by man-made noise and modern drugs, among other causes. These factors, combined with increasing lifespan, have exposed a deficit in cochlear self-regeneration that was irrelevant for most of mammalian evolution. Nevertheless, the mammalian cochlea has evolved from phylogenetically older structures, which do have the capacity for self-repair. Moreover, nonmammalian vertebrates can regenerate auditory hair cells that restore sensory function. We will offer a critical perspective on recent advances in stem cell biology, gene therapy, cell cycle regulation and pharmacotherapeutics to define and validate regenerative medical interventions for mammalian hair cell loss. Although these advances are promising, we are only beginning to fully appreciate the complexity of the many challenges that lie ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual drawings of the normal, damaged and repaired organ of Corti.
Figure 2: Proliferation and hair cell differentiation from supporting cells.

Similar content being viewed by others

References

  1. Dallos, P., Billone, M.C., Durrant, J.D., Wang, C. & Raynor, S. Cochlear inner and outer hair cells: functional differences. Science 177, 356–358 (1972).

    Article  CAS  Google Scholar 

  2. Merchant, S.N., Adams, J.C. & Nadol, J.B. Jr. Pathology and pathophysiology of idiopathic sudden sensorineural hearing loss. Otol. Neurotol. 26, 151–160 (2005).

    Article  Google Scholar 

  3. Nadol, J.B. Jr. & Merchant, S.N. Histopathology and molecular genetics of hearing loss in the human. Int. J. Pediatr. Otorhinolaryngol. 61, 1–15 (2001).

    Article  Google Scholar 

  4. Bhatt, K.A., Liberman, M.C. & Nadol, J.B. Jr. Morphometric analysis of age-related changes in the human basilar membrane. Ann. Otol. Rhinol. Laryngol. 110, 1147–1153 (2001).

    Article  CAS  Google Scholar 

  5. Corwin, J.T. & Cotanche, D.A. Regeneration of sensory hair cells after acoustic trauma. Science 240, 1772–1774 (1988).

    Article  CAS  Google Scholar 

  6. Ryals, B.M. & Rubel, E.W. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240, 1774–1776 (1988).

    Article  CAS  Google Scholar 

  7. Hawkins, J.E. Jr., Johnsson, L.G., Stebbins, W.C., Moody, D.B. & Coombs, S.L. Hearing loss and cochlear pathology in monkeys after noise exposure. Acta Otolaryngol. (Stockh.) 81, 337–343 (1976).

    Article  Google Scholar 

  8. Raphael, Y. & Altschuler, R.A. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil. Cytoskeleton 18, 215–227 (1991).

    Article  CAS  Google Scholar 

  9. Warchol, M.E., Lambert, P.R., Goldstein, B.J., Forge, A. & Corwin, J.T. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259, 1619–1622 (1993).

    Article  CAS  Google Scholar 

  10. Forge, A., Li, L., Corwin, J.T. & Nevill, G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259, 1616–1619 (1993).

    Article  CAS  Google Scholar 

  11. Leung, C.T., Coulombe, P.A. & Reed, R.R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 10, 720–726 (2007).

    Article  CAS  Google Scholar 

  12. Li, H., Liu, H. & Heller, S. Pluripotent stem cells from the adult mouse inner ear. Nat. Med. 9, 1293–1299 (2003).

    Article  CAS  Google Scholar 

  13. Reynolds, B.A. & Rietze, R.L. Neural stem cells and neurospheres—re-evaluating the relationship. Nat. Methods 2, 333–336 (2005).

    Article  CAS  Google Scholar 

  14. Hu, Z. & Corwin, J.T. Inner ear hair cells produced in vitro by a mesenchymal-to-epithelial transition. Proc. Natl. Acad. Sci. USA 104, 16675–16680 (2007).

    Article  CAS  Google Scholar 

  15. Oshima, K. et al. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J. Assoc. Res. Otolaryngol. 8, 18–31 (2007).

    Article  Google Scholar 

  16. Savary, E. et al. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells 25, 332–339 (2007).

    Article  CAS  Google Scholar 

  17. Zhai, S. et al. Isolation and culture of hair cell progenitors from postnatal rat cochleae. J. Neurobiol. 65, 282–293 (2005).

    Article  CAS  Google Scholar 

  18. White, P.M., Doetzlhofer, A., Lee, Y.S., Groves, A.K. & Segil, N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441, 984–987 (2006).

    Article  CAS  Google Scholar 

  19. Kawamoto, K., Ishimoto, S., Minoda, R., Brough, D.E. & Raphael, Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J. Neurosci. 23, 4395–4400 (2003).

    Article  CAS  Google Scholar 

  20. Izumikawa, M. et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat. Med. 11, 271–276 (2005).

    Article  CAS  Google Scholar 

  21. Lumpkin, E.A. et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr. Patterns 3, 389–395 (2003).

    Article  CAS  Google Scholar 

  22. Bermingham, N.A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841 (1999).

    Article  CAS  Google Scholar 

  23. Woods, C., Montcouquiol, M. & Kelley, M.W. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat. Neurosci. 7, 1310–1318 (2004).

    Article  CAS  Google Scholar 

  24. Zheng, J.L. & Gao, W.Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3, 580–586 (2000).

    Article  CAS  Google Scholar 

  25. Gubbels, S.P., Woessner, D.W., Mitchell, J.C., Ricci, A.J. & Brigande, J.V. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455, 537–541 (2008).

    Article  CAS  Google Scholar 

  26. Hayashi, T., Cunningham, D. & Bermingham-McDonogh, O. Loss of Fgfr3 leads to excess hair cell development in the mouse organ of Corti. Dev. Dyn. 236, 525–533 (2007).

    Article  CAS  Google Scholar 

  27. Mansour, S.L. et al. Hearing loss in a mouse model of Muenke syndrome. Hum. Mol. Genet. 18, 43–50 (2009).

    Article  CAS  Google Scholar 

  28. Brooker, R., Hozumi, K. & Lewis, J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133, 1277–1286 (2006).

    Article  CAS  Google Scholar 

  29. Daudet, N. et al. Notch regulation of progenitor cell behavior in quiescent and regenerating auditory epithelium of mature birds Dev. Biol. 326, 86–100 (2009).

    Article  CAS  Google Scholar 

  30. Ma, E.Y., Rubel, E.W. & Raible, D.W. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 28, 2261–2273 (2008).

    Article  CAS  Google Scholar 

  31. Yamamoto, N. et al. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J. Mol. Med. 84, 37–45 (2006).

    Article  CAS  Google Scholar 

  32. Takebayashi, S. et al. Multiple roles of Notch signaling in cochlear development. Dev. Biol. 307, 165–178 (2007).

    Article  CAS  Google Scholar 

  33. Zine, A., Van De Water, T.R. & de Ribaupierre, F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127, 3373–3383 (2000).

    CAS  PubMed  Google Scholar 

  34. Hori, R. et al. Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea. Neuroreport 18, 1911–1914 (2007).

    Article  CAS  Google Scholar 

  35. Chen, P. & Segil, N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 126, 1581–1590 (1999).

    CAS  PubMed  Google Scholar 

  36. Lowenheim, H. et al. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of Corti. Proc. Natl. Acad. Sci. USA 96, 4084–4088 (1999).

    Article  CAS  Google Scholar 

  37. Mantela, J. et al. The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear. Development 132, 2377–2388 (2005).

    Article  CAS  Google Scholar 

  38. Sage, C. et al. Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307, 1114–1118 (2005).

    Article  CAS  Google Scholar 

  39. Sage, C. et al. Essential role of retinoblastoma protein in mammalian hair cell development and hearing. Proc. Natl. Acad. Sci. USA 103, 7345–7350 (2006).

    Article  CAS  Google Scholar 

  40. Weber, T. et al. Rapid cell-cycle reentry and cell death after acute inactivation of the retinoblastoma gene product in postnatal cochlear hair cells. Proc. Natl. Acad. Sci. USA 105, 781–785 (2008).

    Article  CAS  Google Scholar 

  41. Heller, S. & Raphael, Y. Emerging strategies for restoring the cochlea. in Springer Handbook of Auditory Research vol. 31, Auditory Trauma, Protection, and Repair (Schacht, J., Popper, A.N. & Fay, R.R., eds.) 321–338 (Springer, New York, 2008).

    Google Scholar 

  42. Li, H., Roblin, G., Liu, H. & Heller, S. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. USA 100, 13495–13500 (2003).

    Article  CAS  Google Scholar 

  43. Nin, F. et al. The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc. Natl. Acad. Sci. USA 105, 1751–1756 (2008).

    Article  CAS  Google Scholar 

  44. Konishi, M., Kawamoto, K., Izumikawa, M., Kuriyama, H. & Yamashita, T. Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J. Gene Med. 10, 610–618 (2008).

    Article  CAS  Google Scholar 

  45. Chen, P. et al. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d. Nat. Cell Biol. 5, 422–426 (2003).

    Article  CAS  Google Scholar 

  46. Robles, L. & Ruggero, M.A. Mechanics of the mammalian cochlea. Physiol. Rev. 81, 1305–1352 (2001).

    Article  CAS  Google Scholar 

  47. Richter, C.P., Emadi, G., Getnick, G., Quesnel, A. & Dallos, P. Tectorial membrane stiffness gradients. Biophys. J. 93, 2265–2276 (2007).

    Article  CAS  Google Scholar 

  48. Russell, I.J. et al. Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat. Neurosci. 10, 215–223 (2007).

    Article  CAS  Google Scholar 

  49. Flock, A. & Strelioff, D. Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ. Nature 310, 597–599 (1984).

    Article  CAS  Google Scholar 

  50. Ricci, A.J., Crawford, A.C. & Fettiplace, R. Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40, 983–990 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the US National Institutes of Health (DC008595 to J.V.B. and DC06167 to S.H.), the McKnight Endowment Fund for Neuroscience (J.V.B. and S.H.) and the California Institute for Regenerative Medicine (RC1-00119 to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigande, J., Heller, S. Quo vadis, hair cell regeneration?. Nat Neurosci 12, 679–685 (2009). https://doi.org/10.1038/nn.2311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing