Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tonotopic reorganization of developing auditory brainstem circuits

Abstract

A fundamental organizing principle of auditory brain circuits is tonotopy, the orderly representation of the sound frequency to which neurons are most sensitive. Tonotopy arises from the coding of frequency along the cochlea and the topographic organization of auditory pathways. The mechanisms that underlie the establishment of tonotopy are poorly understood. In auditory brainstem pathways, topographic precision is present at very early stages in development, which may suggest that synaptic reorganization contributes little to the construction of precise tonotopic maps. Accumulating evidence from several brainstem nuclei, however, is now changing this view by demonstrating that developing auditory brainstem circuits undergo a marked degree of refinement on both a subcellular and circuit level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of primary auditory sound localization circuits in the mammalian brainstem.
Figure 2: Cochleotopic refinement of auditory nerve projections in the developing anteroventral cochlear nucleus in neonatal cats.
Figure 3: Tonotopic refinement of an inhibitory map in the LSO.
Figure 4: Soma-dendritic and tonotopic refinement of inhibitory inputs to the gerbil MSO.

Similar content being viewed by others

References

  1. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    CAS  PubMed  Google Scholar 

  2. Eggermont, J.J. The role of sound in adult and developmental auditory cortical plasticity. Ear Hear. 29, 819–829 (2008).

    PubMed  Google Scholar 

  3. Keuroghlian, A.S. & Knudsen, E.I. Adaptive auditory plasticity in developing and adult animals. Prog. Neurobiol. 82, 109–121 (2007).

    PubMed  Google Scholar 

  4. Chang, E.F. & Merzenich, M.M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003).

    CAS  PubMed  Google Scholar 

  5. Dahmen, J.C. & King, A.J. Learning to hear: plasticity of auditory cortical processing. Curr. Opin. Neurobiol. 17, 456–464 (2007).

    CAS  PubMed  Google Scholar 

  6. Rubel, E.W. & Fritzsch, B. Auditory system development: primary auditory neurons and their targets. Annu. Rev. Neurosci. 25, 51–101 (2002).

    CAS  PubMed  Google Scholar 

  7. Gurung, B. & Fritzsch, B. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. J. Comp. Neurol. 479, 309–327 (2004).

    PubMed  PubMed Central  Google Scholar 

  8. Kandler, K. & Friauf, E. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J. Comp. Neurol. 328, 161–184 (1993).

    CAS  PubMed  Google Scholar 

  9. Friauf, E. & Kandler, K. Auditory projections to the inferior colliculus of the rat are present by birth. Neurosci. Lett. 120, 58–61 (1990).

    CAS  PubMed  Google Scholar 

  10. Lippe, W. & Rubel, E.W. Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle. J. Comp. Neurol. 237, 273–289 (1985).

    CAS  PubMed  Google Scholar 

  11. Friauf, E. Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. Eur. J. Neurosci. 4, 798–812 (1992).

    PubMed  Google Scholar 

  12. Sanes, D.H., Merickel, M. & Rubel, E.W. Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. J. Comp. Neurol. 279, 436–444 (1989).

    CAS  PubMed  Google Scholar 

  13. Lippe, W.R., Fuhrmann, D.S., Yang, W. & Rubel, E.W. Aberrant projection induced by otocyst removal maintains normal tonotopic organization in the chick cochlear nucleus. J. Neurosci. 12, 962–969 (1992).

    CAS  PubMed  Google Scholar 

  14. Tzounopoulos, T., Kim, Y., Oertel, D. & Trussell, L.O. Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus. Nat. Neurosci. 7, 719–725 (2004).

    CAS  PubMed  Google Scholar 

  15. Fujino, K. & Oertel, D. Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc. Natl. Acad. Sci. USA 100, 265–270 (2003).

    CAS  PubMed  Google Scholar 

  16. Kotak, V.C. & Sanes, D.H. Gain adjustment of inhibitory synapses in the auditory system. Biol. Cybern. 89, 363–370 (2003).

    PubMed  Google Scholar 

  17. Molea, D. & Rubel, E.W. Timing and topography of nucleus magnocellularis innervation by the cochlear ganglion. J. Comp. Neurol. 466, 577–591 (2003).

    PubMed  Google Scholar 

  18. Koundakjian, E.J., Appler, J.L. & Goodrich, L.V. Auditory neurons make stereotyped wiring decisions before maturation of their targets. J. Neurosci. 27, 14078–14088 (2007).

    CAS  PubMed  Google Scholar 

  19. Huffman, K.J. & Cramer, K.S. EphA4 misexpression alters tonotopic projections in the auditory brainstem. Dev. Neurobiol. 67, 1655–1668 (2007).

    CAS  PubMed  Google Scholar 

  20. Cramer, K.S. Eph proteins and the assembly of auditory circuits. Hear. Res. 206, 42–51 (2005).

    CAS  PubMed  Google Scholar 

  21. Fariňas, I. et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 21, 6170–6180 (2001).

    PubMed  PubMed Central  Google Scholar 

  22. Jackson, H. & Parks, T.N. Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. J. Neurosci. 2, 1736–1743 (1982).

    CAS  PubMed  Google Scholar 

  23. Jhaveri, S. & Morest, D.K. Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study. Neuroscience 7, 837–853 (1982).

    CAS  PubMed  Google Scholar 

  24. Lu, T. & Trussell, L.O. Development and elimination of endbulb synapses in the chick cochlear nucleus. J. Neurosci. 27, 808–817 (2007).

    CAS  PubMed  Google Scholar 

  25. Lu, Y., Harris, J.A. & Rubel, E.W. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. J. Neurophysiol. 97, 635–646 (2007).

    PubMed  Google Scholar 

  26. Leake, P.A., Snyder, R.L. & Hradek, G.T. Postnatal refinement of auditory nerve projections to the cochlear nucleus in cats. J. Comp. Neurol. 448, 6–27 (2002).

    PubMed  PubMed Central  Google Scholar 

  27. Snyder, R.L. & Leake, P.A. Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J. Comp. Neurol. 384, 293–311 (1997).

    CAS  PubMed  Google Scholar 

  28. Walsh, E.J. & Romand, R. Functional development of the cochlea and the cochlear nerve. in Development of Auditory and Vestibular Systems (ed. Romand, R.) 161–220 (Elsevier, Amsterdam, 1992).

    Google Scholar 

  29. Jones, T.A., Leake, P.A., Snyder, R.L., Stakhovskaya, O. & Bonham, B. Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. J. Neurophysiol. 98, 1898–1908 (2007).

    PubMed  PubMed Central  Google Scholar 

  30. Walsh, E.J. & McGee, J. Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats. Hear. Res. 36, 233–247 (1988).

    CAS  PubMed  Google Scholar 

  31. Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    CAS  PubMed  Google Scholar 

  32. Sanes, D.H. & Siverls, V. Development and specificity of inhibitory terminal arborizations in the central nervous system. J. Neurobiol. 22, 837–854 (1991).

    CAS  PubMed  Google Scholar 

  33. Tollin, D.J. The lateral superior olive: a functional role in sound source localization. Neuroscientist 9, 127–143 (2003).

    PubMed  Google Scholar 

  34. Sanes, D.H. & Rubel, E.W. The ontogeny of inhibition and excitation in the gerbil lateral superior olive. J. Neurosci. 8, 682–700 (1988).

    CAS  PubMed  Google Scholar 

  35. Sanes, D.H., Song, J. & Tyson, J. Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Brain Res. Dev. Brain Res. 67, 47–55 (1992).

    CAS  PubMed  Google Scholar 

  36. Rietzel, H.J. & Friauf, E. Neuron types in the rat lateral superior olive and developmental changes in the complexity of their dendritic arbors. J. Comp. Neurol. 390, 20–40 (1998).

    CAS  PubMed  Google Scholar 

  37. Sanes, D.H. & Takacs, C. Activity-dependent refinement of inhibitory connections. Eur. J. Neurosci. 5, 570–574 (1993).

    CAS  PubMed  Google Scholar 

  38. Sanes, D.H., Markowitz, S., Bernstein, J. & Wardlow, J. The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J. Comp. Neurol. 321, 637–644 (1992).

    CAS  PubMed  Google Scholar 

  39. Kim, G. & Kandler, K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat. Neurosci. 6, 282–290 (2003).

    CAS  PubMed  Google Scholar 

  40. Antonini, A. & Stryker, M.P. Rapid remodeling of axonal arbors in the visual cortex. Science 260, 1819–1821 (1993).

    CAS  PubMed  Google Scholar 

  41. Colman, H., Nabekura, J. & Lichtman, J.W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    CAS  PubMed  Google Scholar 

  42. Kandler, K. & Friauf, E. Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15, 6890–6904 (1995).

    CAS  PubMed  Google Scholar 

  43. Kotak, V.C., Korada, S., Schwartz, I.R. & Sanes, D.H. A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J. Neurosci. 18, 4646–4655 (1998).

    CAS  PubMed  Google Scholar 

  44. Ehrlich, I., Lohrke, S. & Friauf, E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl- regulation. J. Physiol. (Lond.) 520, 121–137 (1999).

    CAS  Google Scholar 

  45. Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J. Neurosci. 19, 2843–2851 (1999).

    CAS  PubMed  Google Scholar 

  46. Kullmann, P.H. & Kandler, K. Glycinergic/GABAergic synapses in the lateral superior olive are excitatory in neonatal C57Bl/6J mice. Brain Res. Dev. Brain Res. 131, 143–147 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kullmann, P.H., Ene, F.A. & Kandler, K. Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Eur. J. Neurosci. 15, 1093–1104 (2002).

    PubMed  PubMed Central  Google Scholar 

  48. Kullmann, P.H. & Kandler, K. Dendritic Ca2+ responses in neonatal lateral superior olive neurons elicited by glycinergic/GABAergic synapses and action potentials. Neuroscience 154, 338–345 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Luscher, B. & Keller, C.A. Regulation of GABAA receptor trafficking, channel activity and functional plasticity of inhibitory synapses. Pharmacol. Ther. 102, 195–221 (2004).

    CAS  PubMed  Google Scholar 

  50. Kotak, V.C. & Sanes, D.H. Long-lasting inhibitory synaptic depression is age- and calcium-dependent. J. Neurosci. 20, 5820–5826 (2000).

    CAS  PubMed  Google Scholar 

  51. Meier, J. The enigma of transmitter-selective receptor accumulation at developing inhibitory synapses. Cell Tissue Res. 311, 271–276 (2003).

    PubMed  Google Scholar 

  52. Magnusson, A.K., Park, T.J., Pecka, M., Grothe, B. & Koch, U. Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron 59, 125–137 (2008).

    CAS  PubMed  Google Scholar 

  53. Nabekura, J. et al. Developmental switch from GABA to glycine release in single central synaptic terminals. Nat. Neurosci. 7, 17–23 (2004).

    CAS  PubMed  Google Scholar 

  54. Chang, E.H., Kotak, V.C. & Sanes, D.H. Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J. Neurophysiol. 90, 1479–1488 (2003).

    CAS  PubMed  Google Scholar 

  55. Gillespie, D.C., Kim, G. & Kandler, K. Inhibitory synapses in the developing auditory system are glutamatergic. Nat. Neurosci. 8, 332–338 (2005).

    CAS  PubMed  Google Scholar 

  56. Blaesse, P., Ehrhardt, S., Friauf, E. & Nothwang, H.G. Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res. 320, 33–50 (2005).

    CAS  PubMed  Google Scholar 

  57. Seal, R.P. & Edwards, R.H. Functional implications of neurotransmitter co-release: glutamate and GABA share the load. Curr. Opin. Pharmacol. 6, 114–119 (2006).

    CAS  PubMed  Google Scholar 

  58. Kullmann, D.M., Asztely, F. & Walker, M.C. The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell. Mol. Life Sci. 57, 1551–1561 (2000).

    CAS  PubMed  Google Scholar 

  59. Gaiarsa, J.L., Caillard, O. & Ben Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25, 564–570 (2002).

    CAS  PubMed  Google Scholar 

  60. Sanes, D.H. The development of synaptic function and integration in the central auditory system. J. Neurosci. 13, 2627–2637 (1993).

    CAS  PubMed  Google Scholar 

  61. Nishimaki, T., Jang, I.S., Ishibashi, H., Yamaguchi, J. & Nabekura, J. Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses. Eur. J. Neurosci. 26, 323–330 (2007).

    PubMed  Google Scholar 

  62. Grothe, B. New roles for synaptic inhibition in sound localization. Nat. Rev. Neurosci. 4, 540–550 (2003).

    CAS  PubMed  Google Scholar 

  63. Kapfer, C., Seidl, A.H., Schweizer, H. & Grothe, B. Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat. Neurosci. 5, 247–253 (2002).

    CAS  PubMed  Google Scholar 

  64. Seidl, A.H. & Grothe, B. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience. J. Neurophysiol. 94, 1028–1036 (2005).

    PubMed  Google Scholar 

  65. Werthat, F., Alexandrova, O., Grothe, B. & Koch, U. Experience-dependent refinement of the inhibitory axons projecting to the medial superior olive. Dev. Neurobiol. 68, 1454–1462 (2008).

    PubMed  Google Scholar 

  66. Banks, M.I. & Smith, P.H. Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J. Neurosci. 12, 2819–2837 (1992).

    CAS  PubMed  Google Scholar 

  67. Friauf, E., Hammerschmidt, B. & Kirsch, J. Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J. Comp. Neurol. 385, 117–134 (1997).

    CAS  PubMed  Google Scholar 

  68. Agmon-Snir, H., Carr, C.E. & Rinzel, J. The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998).

    CAS  PubMed  Google Scholar 

  69. Kil, J., Kageyama, G.H., Semple, M.N. & Kitzes, L.M. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil. J. Comp. Neurol. 353, 317–340 (1995).

    CAS  PubMed  Google Scholar 

  70. Kitzes, L.M., Kageyama, G.H., Semple, M.N. & Kil, J. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J. Comp. Neurol. 353, 341–363 (1995).

    CAS  PubMed  Google Scholar 

  71. Russell, F.A. & Moore, D.R. Afferent reorganization within the superior olivary complex of the gerbil: development and induction by neonatal, unilateral cochlear removal. J. Comp. Neurol. 352, 607–625 (1995).

    CAS  PubMed  Google Scholar 

  72. Cramer, K.S., Bermingham-McDonogh, O., Krull, C.E. & Rubel, E.W. EphA4 signaling promotes axon segregation in the developing auditory system. Dev. Biol. 269, 26–35 (2004).

    CAS  PubMed  Google Scholar 

  73. Miko, I.J., Nakamura, P.A., Henkemeyer, M. & Cramer, K.S. Auditory brainstem neural activation patterns are altered in EphA4- and ephrin-B2-deficient mice. J. Comp. Neurol. 505, 669–681 (2007).

    CAS  PubMed  Google Scholar 

  74. Taschenberger, H., Leao, R.M., Rowland, K.C., Spirou, G.A. & von Gersdorff, H. Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36, 1127–1143 (2002).

    CAS  PubMed  Google Scholar 

  75. Youssoufian, M., Oleskevich, S. & Walmsley, B. Development of a robust central auditory synapse in congenital deafness. J. Neurophysiol. 94, 3168–3180 (2005).

    CAS  PubMed  Google Scholar 

  76. Leao, R.N. et al. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J. Physiol. (Lond.) 571, 563–578 (2006).

    CAS  Google Scholar 

  77. Hoffpauir, B.K., Grimes, J.L., Mathers, P.H. & Spirou, G.A. Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation. J. Neurosci. 26, 5511–5523 (2006).

    CAS  PubMed  Google Scholar 

  78. Lichtman, J.W. & Colman, H. Synapse elimination and indelible memory. Neuron 25, 269–278 (2000).

    CAS  PubMed  Google Scholar 

  79. Hashimoto, K. & Kano, M. Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci. Res. 53, 221–228 (2005).

    PubMed  Google Scholar 

  80. Lippe, W.R. Rhythmic spontaneous activity in the developing avian auditory system. J. Neurosci. 14, 1486–1495 (1994).

    CAS  PubMed  Google Scholar 

  81. Kotak, V.C. & Sanes, D.H. Synaptically evoked prolonged depolarizations in the developing auditory system. J. Neurophysiol. 74, 1611–1620 (1995).

    CAS  PubMed  Google Scholar 

  82. Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E. & Bergles, D.E. The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007).

    CAS  PubMed  Google Scholar 

  83. Walmsley, B., Berntson, A., Leao, R.N. & Fyffe, R.E. Activity-dependent regulation of synaptic strength and neuronal excitability in central auditory pathways. J. Physiol. (Lond.) 572, 313–321 (2006).

    CAS  Google Scholar 

  84. Cao, X.J., McGinley, M.J. & Oertel, D. Connections and synaptic function in the posteroventral cochlear nucleus of deaf jerker mice. J. Comp. Neurol. 510, 297–308 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Leake, P.A., Hradek, G.T., Chair, L. & Snyder, R.L. Neonatal deafness results in degraded topographic specificity of auditory nerve projections to the cochlear nucleus in cats. J. Comp. Neurol. 497, 13–31 (2006).

    PubMed  PubMed Central  Google Scholar 

  86. Sanes, D.H. & Constantine-Paton, M. Altered activity patterns during development reduce neural tuning. Science 221, 1183–1185 (1983).

    CAS  PubMed  Google Scholar 

  87. Maier, J.K., Kindermann, T., Grothe, B. & Klump, G.M. Effects of omni-directional noise-exposure during hearing onset and age on auditory spatial resolution in the Mongolian gerbil (Meriones unguiculatus)—a behavioral approach. Brain Res. 1220, 47–57 (2008).

    CAS  PubMed  Google Scholar 

  88. Russo, N.M., Nicol, T.G., Zecker, S.G., Hayes, E.A. & Kraus, N. Auditory training improves neural timing in the human brainstem. Behav. Brain Res. 156, 95–103 (2005).

    PubMed  Google Scholar 

  89. Wong, P.C., Skoe, E., Russo, N.M., Dees, T. & Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 10, 420–422 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wible, B., Nicol, T. & Kraus, N. Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biol. Psychol. 67, 299–317 (2004).

    PubMed  Google Scholar 

  91. Russo, N.M. et al. Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clin. Neurophysiol. 119, 1720–1731 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Goldring for editorial support and B. Cornell for insightful discussions. Our work was supported by grants from the National Institute on Deafness and Other Communication Disorders, the Alfred R. Sloan Foundation and the Pennsylvania Lions Hearing Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandler, K., Clause, A. & Noh, J. Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 12, 711–717 (2009). https://doi.org/10.1038/nn.2332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing