Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses

Abstract

Sonic Hedgehog (Shh) has dual roles in vertebrate development, promoting progenitor cell proliferation and inducing tissue patterning. We found that the mitogenic and patterning functions of Shh can be uncoupled from one another. Using a genetic approach to selectively inhibit Shh-proteoglycan interactions in a mouse model, we found that binding of Shh to proteoglycans was required for proliferation of neural stem/precursor cells, but not for tissue patterning. Shh-proteoglycan interactions regulated both spatial and temporal features of Shh signaling. Proteoglycans localized Shh to specialized mitogenic niches and also acted at the single-cell level to regulate the duration of Shh signaling, thereby promoting a gene expression program that is important for cell division. Because activation of the Shh pathway is a feature of diverse human cancers, selective stimulation of proliferation by Shh-proteoglycan interactions may also figure prominently in neoplastic growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ShhAla specifically alters proteoglycan binding.
Figure 2: ShhAla/Ala and ShhAla/− mice show defects in growth, but show normal patterning.
Figure 3: Reduced proliferation of ShhAla/Ala cerebellar granule precursors is seen in the EGL of developing mice.
Figure 4: Embryonic and adult neural stem/precursor proliferation is reduced in ShhAla/Ala mice.
Figure 5: ShhAla cannot specify a mitogenic niche.
Figure 6: Shh-proteoglycan interactions promote proliferation in dissociated cell cultures of GCPs, but are not needed for survival.
Figure 7: Shh-proteoglycan interactions modulate transcriptional activity through the regulation of Gli2 isoforms and signaling kinetics.
Figure 8: Proteoglycan interactions modulate Shh perdurance and differentially affect Shh-dependent gene expression.

Similar content being viewed by others

References

  1. Capdevila, J. & Izpisua Belmonte, J.C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hooper, J.E. & Scott, M.P. Communicating with Hedgehogs. Nat. Rev. Mol. Cell Bio. 6, 306–317 (2005).

    Article  CAS  Google Scholar 

  3. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132, 335–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumor suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Desbordes, S.C. & Sanson, B. The glypican Dally-like is required for Hedgehog signaling in the embryonic epidermis of Drosophila. Development 130, 6245–6255 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Yao, S., Lum, L. & Beachy, P. The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125, 343–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Han, C., Belenkaya, T.Y., Khodoun, M., Tauchi, M. & Lin, X. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131, 1563–1575 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Bornemann, D.J., Duncan, J.E., Staatz, W., Selleck, S. & Warrior, R. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Capurro, M.I. et al. Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev. Cell 14, 700–711 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Bio. 6, 530–541 (2005).

    Article  Google Scholar 

  13. Gallet, A., Staccini-Lavenant, L. & Therond, P.P. Cellular trafficking of the glypican Dally-like is required for full-strength Hedgehog signaling and wingless transcytosis. Dev. Cell 14, 712–725 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Rubin, J.B., Choi, Y. & Segal, R.A. Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 129, 2223–2232 (2002).

    CAS  PubMed  Google Scholar 

  15. Pallerla, S.R., Pan, Y., Zhang, X., Esko, J.D. & Grobe, K. Heparan sulfate Ndst1 gene function variably regulates multiple signaling pathways during mouse development. Dev. Dyn. 236, 556–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Inatani, M., Irie, F., Plump, A.S., Tessier-Lavigne, M. & Yamaguchi, Y. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302, 1044–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Molofsky, A.V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pardal, R., Molofsky, A.V., He, S. & Morrison, S.J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol. 70, 177–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, M.H., Li, Y.J., Kawakami, T., Xu, S.M. & Chuang, P.T. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev. 18, 641–659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Harfe, B.D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Briscoe, J. & Ericson, J. The specification of neuronal identity by graded Sonic Hedgehog signaling. Semin. Cell Dev. Biol. 10, 353–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Wechsler-Reya, R.J. & Scott, M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Charrier, J.B., Lapointe, F., Le Douarin, N.M. & Teillet, M.A. Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis. Development 128, 4011–4020 (2001).

    CAS  PubMed  Google Scholar 

  25. Wallace, V.A. Purkinje cell–derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol. 9, 445–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Yabe, T., Hata, T., He, J. & Maeda, N. Developmental and regional expression of heparan sulfate sulfotransferase genes in the mouse brain. Glycobiology 15, 982–993 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ahn, S. & Joyner, A.L. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437, 894–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Jeong, J. & McMahon, A.P. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development 132, 143–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto, Y., Stock, D.W. & Jeffery, W.R. Hedgehog signaling controls eye degeneration in blind cavefish. Nature 431, 844–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hilton, M.J., Tu, X., Cook, J., Hu, H. & Long, F. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development 132, 4339–4351 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, Y., Borghesani, P.R., Chan, J.A. & Segal, R.A. Migration from a mitogenic niche promotes cell-cycle exit. J. Neurosci. 25, 10437–10445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gritli-Linde, A., Lewis, P., McMahon, A.P. & Linde, A. The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev. Biol. 236, 364–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Hausmann, B. & Sievers, J. Cerebellar external granule cells are attached to the basal lamina from the onset of migration up to the end of their proliferative activity. J. Comp. Neurol. 241, 50–62 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Kenney, A.M., Cole, M.D. & Rowitch, D.H. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130, 15–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kenney, A.M. & Rowitch, D.H. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol. 20, 9055–9067 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ulloa, F. & Briscoe, J. Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6, 2640–2649 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Sasaki, H., Nishizaki, Y., Hui, C., Nakafuku, M. & Kondoh, H. Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126, 3915–3924 (1999).

    CAS  PubMed  Google Scholar 

  38. Aza-Blanc, P., Lin, H.Y., Ruiz i Altaba, A. & Kornberg, T.B. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 127, 4293–4301 (2000).

    PubMed  Google Scholar 

  39. Pan, Y., Bai, C.B., Joyner, A.L. & Wang, B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol. 26, 3365–3377 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blaess, S., Corrales, J.D. & Joyner, A.L. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development 133, 1799–1809 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Corrales, J.D., Rocco, G.L., Blaess, S., Guo, Q. & Joyner, A.L. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131, 5581–5590 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Yoon, J.W. et al. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J. Biol. Chem. 277, 5548–5555 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Duman-Scheel, M., Weng, L., Xin, S. & Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417, 299–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kenney, A.M., Widlund, H.R. & Rowitch, D.H. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Vyas, N. et al. Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133, 1214–1227 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Galvin, K.E., Ye, H. & Wetmore, C. Differential gene induction by genetic and ligand-mediated activation of the Sonic hedgehog pathway in neural stem cells. Dev. Biol. 308, 331–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kleeff, J. et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J. Clin. Invest. 102, 1662–1673 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williamson, D. et al. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res. 67, 57–65 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Despinoy for excellent assistance, C. Stiles, D. Rowitch, M. Greenberg and members of the Segal laboratory for helpful discussions, and D. Rowitch, Q. Ma, P. Chuang, D. Paul, S. O'Gorman, P. Silver and A. McMahon for reagents. This work was supported by the US National Institutes of Health (J.A.C., R.A.S. and S.B.), the Dana Farber Cancer Institute Mahoney Center for Neuro-Oncology (J.A.C.), the Musella Foundation (K.J.N.), the Quan Fellowship (R.M.W.), the Children's Hospital Mental Retardation and Developmental Disabilities Research Center and the Harvard NeuroDiscovery Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind A Segal.

Ethics declarations

Competing interests

Rosalind A Segal receives a research grant and a consulting fee from Novartis for studies on the Hedgehog pathway and cancer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 1150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J., Balasubramanian, S., Witt, R. et al. Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses. Nat Neurosci 12, 409–417 (2009). https://doi.org/10.1038/nn.2287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing