Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sparse odor representation and olfactory learning

Abstract

Sensory systems create neural representations of environmental stimuli and these representations can be associated with other stimuli through learning. Are spike patterns the neural representations that get directly associated with reinforcement during conditioning? In the moth Manduca sexta, we found that odor presentations that support associative conditioning elicited only one or two spikes on the odor's onset (and sometimes offset) in each of a small fraction of Kenyon cells. Using associative conditioning procedures that effectively induced learning and varying the timing of reinforcement relative to spiking in Kenyon cells, we found that odor-elicited spiking in these cells ended well before the reinforcement was delivered. Furthermore, increasing the temporal overlap between spiking in Kenyon cells and reinforcement presentation actually reduced the efficacy of learning. Thus, spikes in Kenyon cells do not constitute the odor representation that coincides with reinforcement, and Hebbian spike timing–dependent plasticity in Kenyon cells alone cannot underlie this learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projection neurons respond reliably to odors, and different odors evoke different temporally structured patterns of activity.
Figure 2: Odor-elicited spiking in Kenyon cells is brief and sparse.
Figure 3: Kenyon cells responded only to the onset of brief odor pulses and to the onset and offset of long pulses.
Figure 4: Greater temporal overlap between odor-elicited spiking in Kenyon cells and reinforcement delivery did not lead to more learning.

Similar content being viewed by others

References

  1. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  Google Scholar 

  2. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    Article  CAS  Google Scholar 

  3. Daly, K.C., Wright, G.A. & Smith, B.H. Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. 92, 236–254 (2004).

    Article  Google Scholar 

  4. Brown, S.L., Joseph, J. & Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005).

    Article  CAS  Google Scholar 

  5. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).

    Article  CAS  Google Scholar 

  6. Perez-Orive, J. et al. Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002).

    Article  CAS  Google Scholar 

  7. Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63 (1993).

    Article  CAS  Google Scholar 

  8. Schröter, U. & Menzel, R. A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465, 168–178 (2003).

    Article  Google Scholar 

  9. Dacks, A.M., Christensen, T.A., Agricola, H., Wollweber, L. & Hildebrand, J.G. Octopamine-immunoreactive neurons in the brain and subesophageal ganglion of the hawkmoth Manduca sexta. J. Comp. Neurol. 488, 255–268 (2005).

    Article  CAS  Google Scholar 

  10. Heisenberg, M., Borst, A., Wagner, S. & Byers, D. Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 1–30 (1985).

    Article  CAS  Google Scholar 

  11. de Belle, J.S. & Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692–695 (1994).

    Article  CAS  Google Scholar 

  12. Erber, J. Retrograde amnesia in honeybees (Apis mellifera carnica). J. Comp. Physiol. Psychol. 90, 41–46 (1976).

    Article  CAS  Google Scholar 

  13. Heisenberg, M. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266–275 (2003).

    Article  CAS  Google Scholar 

  14. Davis, R.L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005).

    Article  CAS  Google Scholar 

  15. Krashes, M.J., Keene, A.C., Leung, B., Armstrong, J.D. & Waddell, S. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53, 103–115 (2007).

    Article  CAS  Google Scholar 

  16. Keene, A.C. & Waddell, S. Drosophila olfactory memory: single genes to complex neural circuits. Nat. Rev. Neurosci. 8, 341–354 (2007).

    Article  CAS  Google Scholar 

  17. Christensen, T.A. & Hildebrand, J.G. Male-specific, sex pheromone–selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. [A] 160, 553–569 (1987).

    Article  CAS  Google Scholar 

  18. Daly, K.C. & Smith, B.H. Associative olfactory learning in the moth Manduca sexta. J. Exp. Biol. 203, 2025–2038 (2000).

    CAS  PubMed  Google Scholar 

  19. Bitterman, M.E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97, 107–119 (1983).

    Article  CAS  Google Scholar 

  20. Fan, R.J., Anderson, P. & Hansson, B. Behavioural analysis of olfactory conditioning in the moth spodoptera littoralis (Boisd.) (Lepidoptera: noctuidae). J. Exp. Biol. 200, 2969–2976 (1997).

    PubMed  Google Scholar 

  21. Müller, U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27, 159–168 (2000).

    Article  Google Scholar 

  22. Skiri, H.T., Stranden, M., Sandoz, J.C., Menzel, R. & Mustaparta, H. Associative learning of plant odorants activating the same or different receptor neurones in the moth Heliothis virescens. J. Exp. Biol. 208, 787–796 (2005).

    Article  CAS  Google Scholar 

  23. Cassenaer, S. & Laurent, G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448, 709–713 (2007).

    Article  CAS  Google Scholar 

  24. Carlsson, M.A., Knüsel, P., Verschure, P.F.M.J. & Hansson, B.S. Spatio-temporal Ca2+ dynamics of moth olfactory projection neurones. Eur. J. Neurosci. 22, 647–657 (2005).

    Article  Google Scholar 

  25. Wilson, R.I., Turner, G.C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

    Article  CAS  Google Scholar 

  26. Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  Google Scholar 

  27. Vinje, W.E. & Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).

    Article  CAS  Google Scholar 

  28. Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Szyszka, P., Ditzen, M., Galkin, A., Galizia, C.G. & Menzel, R. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J. Neurophysiol. 94, 3303–3313 (2005).

    Article  Google Scholar 

  30. Wang, Y. et al. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein–based Ca2+ imaging. J. Neurosci. 24, 6507–6514 (2004).

    Article  CAS  Google Scholar 

  31. Turner, G.C., Bazhenov, M. & Laurent, G. Olfactory representations by Drosophila mushroom body neurons. J Neurophysiol. 99, 734–746 (2007).

    Article  Google Scholar 

  32. Thum, A.S., Jenett, A., Ito, K., Heisenberg, M. & Tanimoto, H. Multiple memory traces for olfactory reward learning in Drosophila. J. Neurosci. 27, 11132–11138 (2007).

    Article  CAS  Google Scholar 

  33. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    Article  CAS  Google Scholar 

  34. Olshausen, B.A. & Field, D.J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    Article  CAS  Google Scholar 

  35. Willshaw, D.J., Buneman, O.P. & Longuet-Higgins, H.C. Non-holographic associative memory. Nature 222, 960–962 (1969).

    Article  CAS  Google Scholar 

  36. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    Article  CAS  Google Scholar 

  37. Tanimoto, H., Heisenberg, M. & Gerber, B. Experimental psychology: event timing turns punishment to reward. Nature 430, 983 (2004).

    Article  CAS  Google Scholar 

  38. Drew, P.J. & Abbott, L.F. Extending the effects of spike timing–dependent plasticity to behavioral time scales. Proc. Natl. Acad. Sci. USA 103, 8876–8881 (2006).

    Article  CAS  Google Scholar 

  39. Izhikevich, E.M. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452 (2007).

    Article  Google Scholar 

  40. Schwaerzel, M. et al. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003).

    Article  CAS  Google Scholar 

  41. Bell, R.A. & Joachim, F.A. Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms lepidoptera-sphingidae-gelechiidae. Ann. Entomol. Soc. Am. 69, 365–373 (1976).

    Article  Google Scholar 

  42. Laurent, G. & Naraghi, M. Odorant-induced oscillations in the mushroom bodies of the locust. J. Neurosci. 14, 2993–3004 (1994).

    Article  CAS  Google Scholar 

  43. Pouzat, C., Mazor, O. & Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods 122, 43–57 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Stopfer laboratory for helpful discussions. We especially thank K. Sun for her excellent animal care. Micrographs were made at the Microscopy and Imaging Core (US National Institute of Child Health and Development, NICHD) with the assistance of V. Schram. We thank C. Wu in the Biometry and Mathematical Statistics Branch, US National Institutes of Health (NIH)/NICHD for his advice on the statistical analysis of the behavioral experiments. This work was supported by grants from the Japan Society for the Promotion of Science (00169, 70510) to I.I., a joint NIH–National Institutes of Standards and Technology postdoctoral fellowship award by the National Research Council to B.R. and an intramural grant from NIH-NICHD to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stopfer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 4618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, I., Ong, Ry., Raman, B. et al. Sparse odor representation and olfactory learning. Nat Neurosci 11, 1177–1184 (2008). https://doi.org/10.1038/nn.2192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing