Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experience-dependent binocular competition in the visual cortex begins at eye opening

Abstract

Visual experience begins at eye opening, but current models consider cortical circuitry to be resistant to experience-dependent competitive modification until the activation of a later critical period. Here we examine this idea using optical imaging to map the time course of receptive field refinement in normal mice, mice in which the contralateral eye never opens and mice in which the contralateral eye is silenced. We found that the refinement of ipsilateral eye retinotopy is retarded by contralateral deprivation, but accelerated by silencing of the contralateral eye. Patterned visual experience through the ipsilateral eye is required for this acceleration. These differences are most obvious at postnatal day 15, long before the start of the critical period, indicating that experience-dependent binocular plasticity occurs much earlier than was previously thought. Furthermore, these results suggest that the quality of activity, in terms of signal to noise, and not the quantity, determines robust receptive field development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual system of the mouse.
Figure 2: Time course of normal development of retinotopic maps in mouse visual cortex.
Figure 3: Contralateral deprivation retards the maturation of ipsilateral eye maps.
Figure 4: Removing or silencing the contralateral eye accelerates the maturation of ipsilateral eye maps.
Figure 5: Patterned visual experience is required for retinotopic map development.
Figure 6: Well-organized, low-scatter retinotopic maps can be detected even when the maximum response magnitude is low.

Similar content being viewed by others

References

  1. Hubel, D.H. & Wiesel, T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  2. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  3. Issa, N.P., Trachtenberg, J.T., Chapman, B., Zahs, K.R. & Stryker, M.P. The critical period for ocular dominance plasticity in the Ferret's visual cortex. J. Neurosci. 19, 6965–6978 (1999).

    Article  CAS  Google Scholar 

  4. Olson, C.R. & Freeman, R.D. Profile of the sensitive period for monocular deprivation in kittens. Exp. Brain Res. 39, 17–21 (1980).

    CAS  PubMed  Google Scholar 

  5. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  6. Fagiolini, M. & Hensch, T.K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 (2000).

    Article  CAS  Google Scholar 

  7. Fagiolini, M. et al. Specific GABAA circuits for visual cortical plasticity. Science 303, 1681–1683 (2004).

    Article  CAS  Google Scholar 

  8. Crair, M.C., Gillespie, D.C. & Stryker, M.P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  9. White, L.E., Coppola, D.M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001).

    Article  CAS  Google Scholar 

  10. Pettigrew, J.D. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J. Physiol. (Lond.) 237, 49–74 (1974).

    Article  CAS  Google Scholar 

  11. Sherk, H. & Stryker, M.P. Quantitative study of cortical orientation selectivity in visually inexperienced kitten. J. Neurophysiol. 39, 63–70 (1976).

    Article  CAS  Google Scholar 

  12. Ruthazer, E.S. & Stryker, M.P. The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996).

    Article  CAS  Google Scholar 

  13. Crowley, J.C. & Katz, L.C. Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2, 1125–1130 (1999).

    Article  CAS  Google Scholar 

  14. Crowley, J.C. & Katz, L.C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).

    Article  CAS  Google Scholar 

  15. Wallace, W. & Bear, M.F. A morphological correlate of synaptic scaling in visual cortex. J. Neurosci. 24, 6928–6938 (2004).

    Article  CAS  Google Scholar 

  16. Lu, W. & Constantine-Paton, M. Eye opening rapidly induces synaptic potentiation and refinement. Neuron 43, 237–249 (2004).

    Article  CAS  Google Scholar 

  17. Maffei, A., Nelson, S.B. & Turrigiano, G.G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat. Neurosci. 7, 1353–1359 (2004).

    Article  CAS  Google Scholar 

  18. Tagawa, Y., Kanold, P.O., Majdan, M. & Shatz, C.J. Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat. Neurosci. 8, 380–388 (2005).

    Article  CAS  Google Scholar 

  19. Li, Y., Fitzpatrick, D. & White, L.E. The development of direction selectivity in ferret visual cortex requires early visual experience. Nat. Neurosci. 9, 676–681 (2006).

    Article  CAS  Google Scholar 

  20. Kalatsky, V.A. & Stryker, M.P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article  CAS  Google Scholar 

  21. Taha, S., Hanover, J.L., Silva, A.J. & Stryker, M.P. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 36, 483–491 (2002).

    Article  CAS  Google Scholar 

  22. Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).

    Article  CAS  Google Scholar 

  23. Godement, P., Salaun, J. & Imbert, M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575 (1984).

    Article  CAS  Google Scholar 

  24. Chapman, B. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287, 2479–2482 (2000).

    Article  CAS  Google Scholar 

  25. Chapman, B., Jacobson, M.D., Reiter, H.O. & Stryker, M.P. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature 324, 154–156 (1986).

    Article  CAS  Google Scholar 

  26. Song, S., Miller, K.D. & Abbott, L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

    Article  CAS  Google Scholar 

  27. Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  Google Scholar 

  28. Miller, K.D., Keller, J.B. & Stryker, M.P. Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989).

    Article  CAS  Google Scholar 

  29. Feldman, D.E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).

    Article  CAS  Google Scholar 

  30. Chang, E.F. & Merzenich, M.M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003).

    Article  CAS  Google Scholar 

  31. Weliky, M. & Katz, L.C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  CAS  Google Scholar 

  32. Zhou, Q., Tao, H.W. & Poo, M.M. Reversal and stabilization of synaptic modifications in a developing visual system. Science 300, 1953–1957 (2003).

    Article  CAS  Google Scholar 

  33. Vereecken, E.P. & Brabant, P. Prognosis for vision in amblyopia after the loss of the good eye. Arch. Ophthalmol. 102, 220–224 (1984).

    Article  CAS  Google Scholar 

  34. Isenberg, S.J. Amblyopia can be treated without occlusion or atropine. Ophthalmology 113, 893 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Stryker for suggesting the APB experiments and for helping to troubleshoot our imaging setup; E. Ruthazer for providing us with his enucleation protocol; and A. McGee, W. Thompson, J. Faguet, E. Ruthazer and M. Stryker for critically reading the manuscript. This work was supported by the US National Eye Institute, the Klingenstein Foundation and the Giannini Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.L.S. conducted the experiments, wrote the computer code for image acquisition and analysis, conducted the data analyses and prepared the figures. J.T.T. conducted some of the experiments and supervised the project. S.L.S. and J.T.T. contributed equally to writing the manuscript.

Corresponding author

Correspondence to Joshua T Trachtenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S., Trachtenberg, J. Experience-dependent binocular competition in the visual cortex begins at eye opening. Nat Neurosci 10, 370–375 (2007). https://doi.org/10.1038/nn1844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing