Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Target profiling of small molecules by chemical proteomics

Abstract

The medical and pharmaceutical communities are facing a dire need for new druggable targets, while, paradoxically, the targets of some drugs that are in clinical use or development remain elusive. Many compounds have been found to be more promiscuous than originally anticipated, which can potentially lead to side effects, but which may also open up additional medical uses. As we move toward systems biology and personalized medicine, comprehensively determining small molecule–target interaction profiles and mapping these on signaling and metabolic pathways will become increasingly necessary. Chemical proteomics is a powerful mass spectrometry–based affinity chromatography approach for identifying proteome-wide small molecule–protein interactions. Here we will provide a critical overview of the basic concepts and recent advances in chemical proteomics and review recent applications, with a particular emphasis on kinase inhibitors and natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Stable isotope labeling–based quantitative mass spectrometry approaches in chemical proteomics.
Figure 4: Complementarity of various omics technologies providing a systems-level understanding of small-molecule perturbation of biological pathways and drug effects.

Similar content being viewed by others

References

  1. Booth, B. & Zemmel, R. Prospects for productivity. Nat. Rev. Drug Discov. 3, 451–456 (2004).

    CAS  PubMed  Google Scholar 

  2. Brown, D. Unfinished business: target-based drug discovery. Drug Discov. Today 12, 1007–1012 (2007).

    CAS  PubMed  Google Scholar 

  3. Stockwell, B.R. Exploring biology with small organic molecules. Nature 432, 846–854 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  6. Quintás-Cardama, A., Kantarjian, H. & Cortes, J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nat. Rev. Drug Discov. 6, 834–848 (2007).

    PubMed  Google Scholar 

  7. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    PubMed  Google Scholar 

  8. Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Meisner, N.C. et al. The chemical hunt for the identification of drugable targets. Curr. Opin. Chem. Biol. 8, 424–431 (2004).

    CAS  PubMed  Google Scholar 

  10. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    CAS  PubMed  Google Scholar 

  11. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  12. Cohen, A.A. et al. Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–1516 (2008).

    CAS  PubMed  Google Scholar 

  13. Watkins, S.M. & German, J.B. Metabolomics and biochemical profiling in drug discovery and development. Curr. Opin. Mol. Ther. 4, 224–228 (2002).

    CAS  PubMed  Google Scholar 

  14. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    CAS  PubMed  Google Scholar 

  16. Becker, F. et al. A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem. Biol. 11, 211–223 (2004).

    CAS  PubMed  Google Scholar 

  17. Caligiuri, M. et al. MASPIT: three-hybrid trap for quantitative proteome fingerprinting of small molecule-protein interactions in mammalian cells. Chem. Biol. 13, 711–722 (2006).

    CAS  PubMed  Google Scholar 

  18. Jaeger, S., Eriani, G. & Martin, F. Results and prospects of the yeast three-hybrid system. FEBS Lett. 556, 7–12 (2004).

    CAS  PubMed  Google Scholar 

  19. Sadaghiani, A.M., Verhelst, S.H. & Bogyo, M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20–28 (2007).

    CAS  PubMed  Google Scholar 

  20. Barglow, K.T. & Cravatt, B.F. Activity-based protein profiling for the functional annotation of enzymes. Nat. Methods 4, 822–827 (2007).

    CAS  PubMed  Google Scholar 

  21. Hagenstein, M.C. & Sewald, N. Chemical tools for activity-based proteomics. J. Biotechnol. 124, 56–73 (2006).

    CAS  PubMed  Google Scholar 

  22. Doucet, A., Butler, G.S., Rodriguez, D., Prudova, A. & Overall, C.M. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol. Cell. Proteomics 7, 1925–1951 (2008).

    CAS  PubMed  Google Scholar 

  23. Cuatrecasas, P., Wilchek, M. & Anfinsen, C.B. Selective enzyme purification by affinity chromatography. Proc. Natl. Acad. Sci. USA 61, 636–643 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Harding, M.W., Galat, A., Uehling, D.E. & Schreiber, S.L. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341, 758–760 (1989).

    CAS  PubMed  Google Scholar 

  25. Crews, C.M., Collins, J.L., Lane, W.S., Snapper, M.L. & Schreiber, S.L. GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 alpha. J. Biol. Chem. 269, 15411–15414 (1994).

    CAS  PubMed  Google Scholar 

  26. Knockaert, M. et al. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem. Biol. 7, 411–422 (2000).

    CAS  PubMed  Google Scholar 

  27. Wilm, M. & Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996).

    CAS  PubMed  Google Scholar 

  28. Ong, S.E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252–262 (2005).

    CAS  PubMed  Google Scholar 

  29. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    CAS  PubMed  Google Scholar 

  31. Veenstra, T.D., Martinovic, S., Anderson, G.A., Pasa-Tolic, L. & Smith, R.D. Proteome analysis using selective incorporation of isotopically labeled amino acids. J. Am. Soc. Mass Spectrom. 11, 78–82 (2000).

    CAS  PubMed  Google Scholar 

  32. Wilm, M., Neubauer, G. & Mann, M. Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68, 527–533 (1996).

    CAS  PubMed  Google Scholar 

  33. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  34. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    CAS  PubMed  Google Scholar 

  35. Shoemaker, B.A. & Panchenko, A.R. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput. Biol. 3, e42 (2007).

    PubMed  PubMed Central  Google Scholar 

  36. Brehmer, D., Godl, K., Zech, B., Wissing, J. & Daub, H. Proteome-wide identification of cellular targets affected by bisindolylmaleimide-type protein kinase C inhibitors. Mol. Cell. Proteomics 3, 490–500 (2004).

    CAS  PubMed  Google Scholar 

  37. Bach, S. et al. Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).

    CAS  PubMed  Google Scholar 

  38. Rix, U. et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110, 4055–4063 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Aye, T.T. et al. Selectivity in enrichment of cAMP-dependent protein kinase regulatory subunits type I and type II and their interactors using modified cAMP affinity resins. Mol. Cell Proteomics 8, 1016–1028 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ong, S.E. et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl. Acad. Sci. USA 106, 4617–4622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brehmer, D. et al. Cellular targets of gefitinib. Cancer Res. 65, 379–382 (2005).

    CAS  PubMed  Google Scholar 

  42. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    CAS  PubMed  Google Scholar 

  43. Daub, H. et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31, 438–448 (2008).

    CAS  PubMed  Google Scholar 

  44. Zhang, Y.X. et al. AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res. 68, 1905–1915 (2008).

    CAS  PubMed  Google Scholar 

  45. Zhou, H.X., Rivas, G. & Minton, A.P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37, 375–397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oda, Y. et al. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75, 2159–2165 (2003).

    CAS  PubMed  Google Scholar 

  47. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007).

    CAS  PubMed  Google Scholar 

  48. Wang, G., Shang, L., Burgett, A.W., Harran, P.G. & Wang, X. Diazonamide toxins reveal an unexpected function for ornithine delta-amino transferase in mitotic cell division. Proc. Natl. Acad. Sci. USA 104, 2068–2073 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schirle, M., Heurtier, M.A. & Kuster, B. Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics 2, 1297–1305 (2003).

    CAS  PubMed  Google Scholar 

  50. Shiyama, T., Furuya, M., Yamazaki, A., Terada, T. & Tanaka, A. Design and synthesis of novel hydrophilic spacers for the reduction of nonspecific binding proteins on affinity resins. Bioorg. Med. Chem. 12, 2831–2841 (2004).

    CAS  PubMed  Google Scholar 

  51. Knockaert, M. et al. p42/p44 MAPKs are intracellular targets of the CDK inhibitor purvalanol. Oncogene 21, 6413–6424 (2002).

    CAS  PubMed  Google Scholar 

  52. Taunton, J., Hassig, C.A. & Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  53. Shimizu, N. et al. High-performance affinity beads for identifying drug receptors. Nat. Biotechnol. 18, 877–881 (2000).

    CAS  PubMed  Google Scholar 

  54. Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Veken, P. et al. Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides. ChemBioChem 6, 2271–2280 (2005).

    CAS  PubMed  Google Scholar 

  56. Fauq, A.H., Kache, R., Khan, M.A. & Vega, I.E. Synthesis of acid-cleavable light isotope-coded affinity tags (ICAT-L) for potential use in proteomic expression profiling analysis. Bioconjug. Chem. 17, 248–254 (2006).

    CAS  PubMed  Google Scholar 

  57. Shimkus, M., Levy, J. & Herman, T. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc. Natl. Acad. Sci. USA 82, 2593–2597 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Verhelst, S.H., Fonovic, M. & Bogyo, M. A mild chemically cleavable linker system for functional proteomic applications. Angew. Chem. Int. Edn Engl. 46, 1284–1286 (2007).

    CAS  Google Scholar 

  59. Fonović, M., Verhelst, S.H., Sorum, M.T. & Bogyo, M. Proteomics evaluation of chemically cleavable activity-based probes. Mol. Cell. Proteomics 6, 1761–1770 (2007).

    PubMed  Google Scholar 

  60. Griffith, E.C. et al. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem. Biol. 4, 461–471 (1997).

    CAS  PubMed  Google Scholar 

  61. Sin, N., Meng, L., Auth, H. & Crews, C.M. Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorg. Med. Chem. 6, 1209–1217 (1998).

    CAS  PubMed  Google Scholar 

  62. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    CAS  PubMed  Google Scholar 

  63. Katayama, H. & Oda, Y. Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 855, 21–27 (2007).

    CAS  PubMed  Google Scholar 

  64. Winger, J.A., Hantschel, O., Superti-Furga, G. & Kuriyan, J. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Struct. Biol. 9, 7 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Förster, T. Intermolecular energy migration and fluorescence. Ann. Phys. 2, 55–75 (1948).

    Google Scholar 

  66. Duncan, J.S. et al. An unbiased evaluation of CK2 inhibitors by chemoproteomics: characterization of inhibitor effects on CK2 and identification of novel inhibitor targets. Mol. Cell. Proteomics 7, 1077–1088 (2008).

    CAS  PubMed  Google Scholar 

  67. Ghoreschi, K., Laurence, A. & O'Shea, J.J. Selectivity and therapeutic inhibition of kinases: to be or not to be? Nat. Immunol. 10, 356–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    CAS  PubMed  Google Scholar 

  69. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    CAS  PubMed  Google Scholar 

  70. Godl, K. et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. USA 100, 15434–15439 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wissing, J. et al. Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Mol. Cell. Proteomics 3, 1181–1193 (2004).

    CAS  PubMed  Google Scholar 

  72. Godl, K. et al. Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res. 65, 6919–6926 (2005).

    CAS  PubMed  Google Scholar 

  73. Wan, Y. et al. Synthesis and target identification of hymenialdisine analogs. Chem. Biol. 11, 247–259 (2004).

    CAS  PubMed  Google Scholar 

  74. Kim, E. & Park, J.M. Identification of novel target proteins of cyclic GMP signaling pathways using chemical proteomics. J. Biochem. Mol. Biol. 36, 299–304 (2003).

    CAS  PubMed  Google Scholar 

  75. Scholten, A. et al. Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. J. Proteome Res. 5, 1435–1447 (2006).

    CAS  PubMed  Google Scholar 

  76. Scholten, A., van Veen, T.A., Vos, M.A. & Heck, A.J. Diversity of cAMP-dependent protein kinase isoforms and their anchoring proteins in mouse ventricular tissue. J. Proteome Res. 6, 1705–1717 (2007).

    CAS  PubMed  Google Scholar 

  77. Remsing Rix, L.L. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23, 477–485 (2009).

    CAS  PubMed  Google Scholar 

  78. Hantschel, O. et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc. Natl. Acad. Sci. USA 104, 13283–13288 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Feher, M. & Schmidt, J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    CAS  PubMed  Google Scholar 

  80. Piggott, A.M. & Karuso, P. Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb. Chem. High Throughput Screen. 7, 607–630 (2004).

    CAS  PubMed  Google Scholar 

  81. Chen, J.K., Lane, W.S. & Schreiber, S.L. The identification of myriocin-binding proteins. Chem. Biol. 6, 221–235 (1999).

    CAS  PubMed  Google Scholar 

  82. Adam, G.C., Vanderwal, C.D., Sorensen, E.J. & Cravatt, B.F. (−)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew. Chem. Int. Edn. Engl. 42, 5480–5484 (2003).

    CAS  Google Scholar 

  83. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    CAS  PubMed  Google Scholar 

  84. Low, W.K. et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell 20, 709–722 (2005).

    CAS  PubMed  Google Scholar 

  85. Bordeleau, M.E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl. Acad. Sci. USA 102, 10460–10465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bordeleau, M.E. et al. RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem. Biol. 13, 1287–1295 (2006).

    CAS  PubMed  Google Scholar 

  87. Low, W.K., Dang, Y., Bhat, S., Romo, D. & Liu, J.O. Substrate-dependent targeting of eukaryotic translation initiation factor 4A by pateamine A: negation of domain-linker regulation of activity. Chem. Biol. 14, 715–727 (2007).

    CAS  PubMed  Google Scholar 

  88. van der Greef, J. et al. The art and practice of systems biology in medicine: mapping patterns of relationships. J. Proteome Res. 6, 1540–1559 (2007).

    CAS  PubMed  Google Scholar 

  89. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    CAS  PubMed  Google Scholar 

  90. Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    CAS  PubMed  Google Scholar 

  91. Mizuarai, S., Irie, H., Schmatz, D.M. & Kotani, H. Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets. Curr. Mol. Med. 8, 774–783 (2008).

    CAS  PubMed  Google Scholar 

  92. Brehme, M. et al. Charting the molecular network of the drug target Bcr-Abl. Proc. Natl. Acad. Sci. USA 106, 7414–7419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    CAS  PubMed  Google Scholar 

  94. Bürckstümmer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013–1019 (2006).

    PubMed  Google Scholar 

  95. Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol. Syst. Biol. 5, 237 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Kruse, U., Bantscheff, M., Drewes, G. & Hopf, C. Chemical and pathway proteomics: powerful tools for oncology drug discovery and personalized health care. Mol. Cell. Proteomics 7, 1887–1901 (2008).

    CAS  PubMed  Google Scholar 

  97. Snyder, J.R. et al. Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem. Biol. 12, 477–484 (2005).

    CAS  PubMed  Google Scholar 

  98. Zhang, Q. et al. Small-molecule synergist of the Wnt/beta-catenin signaling pathway. Proc. Natl. Acad. Sci. USA 104, 7444–7448 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bachovchin, D.A., Brown, S.J., Rosen, H. & Cravatt, B.F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat. Biotechnol. 27, 387–394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hagenstein, M.C. et al. Affinity-based tagging of protein families with reversible inhibitors: a concept for functional proteomics. Angew. Chem. Int. Edn. Engl. 42, 5635–5638 (2003).

    CAS  Google Scholar 

  101. Ge, X. & Sem, D.S. Affinity-based chemical proteomic probe for dehydrogenases: fluorescence and visible binding assays in gels. Anal. Biochem. 370, 171–179 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Brehme for graphical assistance and our colleagues for providing information about the most current publications in press. We acknowledge financial support from the Austrian Federal Ministry for Science and Research under the GEN-AU program (GZ 200.142/1-VI/1/2006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uwe Rix or Giulio Superti-Furga.

Ethics declarations

Competing interests

G.S.-F. holds stocks of Cellzome AG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rix, U., Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5, 616–624 (2009). https://doi.org/10.1038/nchembio.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing