Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution of efficient pathways for degradation of anthropogenic chemicals

Abstract

Anthropogenic compounds used as pesticides, solvents and explosives often persist in the environment and can cause toxicity to humans and wildlife. The persistence of anthropogenic compounds is due to their recent introduction into the environment; microbes in soil and water have had relatively little time to evolve efficient mechanisms for degradation of these new compounds. Some anthropogenic compounds are easily degraded, whereas others are degraded very slowly or only partially, leading to accumulation of toxic products. This review examines the factors that affect the ability of microbes to degrade anthropogenic compounds and the mechanisms by which new pathways emerge in nature. New approaches for engineering microbes with enhanced degradative abilities include assembly of pathways using enzymes from multiple organisms, directed evolution of inefficient enzymes, and genome shuffling to improve microbial fitness under the challenging conditions posed by contaminated environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two pathways for biodegradation of anthrogenic pollutants introduced in the 20th century.
Figure 2: Examples of promiscuous enzymatic activities.
Figure 3: Binding of ligands to the active site of o-succinylbenzoate synthase.
Figure 4
Figure 5
Figure 6: An engineered pathway for degradation of paraoxon that uses enzymes from four different microbes.
Figure 7: An engineered pathway for degradation of cis-1,2-dichloroethylene that uses enzymes with promiscuous activities from two different bacteria.

Similar content being viewed by others

References

  1. Stockdale, M. & Selwyn, M.J. Effects of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration. Eur. J. Biochem. 21, 565–574 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Ting, H.P., Wilson, D.F. & Chance, B. Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes. Arch. Biochem. Biophys. 141, 141–146 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Badkoubi, A., Stevens, D.K. & Murarka, I.P. Quantification of pentachlorophenol product distribution in the presence of Phanerochaete chrysosporium. Arch. Environ. Contam. Toxicol. 30, 1–8 (1996).

    Article  CAS  Google Scholar 

  4. Shapir, N. et al. Evolution of catabolic pathways: genomic insights into microbial s-triazine metabolism. J. Bacteriol. 189, 674–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Cai, M. & Xun, L. Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J. Bacteriol. 184, 4672–4680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai, M., Bull Rogers, J., Warner, J.R. & Copley, S.D. A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J. Bacteriol. 185, 302–310 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Afriat, L., Roodveldt, C., Manco, G. & Tawfik, D.S. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45, 13677–13686 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. O'Brien, P.J. & Herschlag, D. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry 40, 5691–5699 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. O'Brien, P.J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Palmer, D.R. et al. Unexpected divergence of enzyme function and sequence: “N-acylamino acid racemase” is o-succinylbenzoate synthase. Biochemistry 38, 4252–4258 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Gerlt, J.A., Babbitt, P.C. & Rayment, I. Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch. Biochem. Biophys. 433, 59–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Seffernick, J.L., de Souza, M.L., Sadowsky, M.J. & Wackett, L.P. Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. J. Bacteriol. 183, 2405–2410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poelarends, G.J., Wilkens, M., Larkin, M.J., van Elsas, J.D. & Janssen, D.B. Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170. Appl. Environ. Microbiol. 64, 2931–2936 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Omburo, G.A., Kuo, J.M., Mullins, L.S. & Raushel, F.M. Characterization of the zinc binding site of bacterial phosphotriesterase. J. Biol. Chem. 267, 13278–13283 (1992).

    CAS  PubMed  Google Scholar 

  15. Roodveldt, C. & Tawfik, D.S. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochemistry 44, 12728–12736 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Freilich, S. et al. The complement of enzymatic sets in different species. J. Mol. Biol. 349, 745–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Haigler, B.E. & Spain, J.C. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59, 2239–2243 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Spiess, T. et al. A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl. Environ. Microbiol. 64, 446–452 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. He, Z. & Spain, J.C. Reactions involved in the lower pathway for degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1. Appl. Environ. Microbiol. 66, 3010–3015 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Weinreich, D.M., Delaney, N.F., DePristo, M.A. & Hartl, D.L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Clarke, P.H. & Drew, R. An experiment in enzyme evolution. Studies with Pseudomonas aeruginosa amidase. Biosci. Rep. 8, 103–120 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Ali-Sadat, S., Mohan, K.S. & Walia, S.K. A novel pathway for the biodegradation of 3-nitrotoluene in Pseudomonas putida. FEMS Microbiol. Ecol. 17, 169–176 (1995).

    Article  CAS  Google Scholar 

  24. Devers, M., Rouard, N. & Martin-Laurent, F. Fitness drift of an atrazine-degrading population under atrazine selection pressure. Environ. Microbiol. 10, 676–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Nakatsu, C.H. et al. Parallel and divergent genotypic evolution in experimental populations of Ralstonia sp. J. Bacteriol. 180, 4325–4331 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai, M. & Xun, L. Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J. Bacteriol. 184, 4672–4680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seibert, C.M. & Raushel, F.M. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44, 6383–6391 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. McCarthy, D.L., Claude, A. & Copley, S.D. In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 63, 1883–1888 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Neujahr, H.Y. & Kjellen, K.G. Phenol hydroxylase from yeast. Reaction with phenol derivatives. J. Biol. Chem. 253, 8835–8841 (1978).

    CAS  PubMed  Google Scholar 

  30. Entsch, B., Ballou, D.P. & Massey, V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J. Biol. Chem. 251, 2550–2563 (1976).

    CAS  PubMed  Google Scholar 

  31. Massey, V. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994).

    CAS  PubMed  Google Scholar 

  32. Bedard, D.L. Polychlorinated biphenyls in aquatic sediments: environmental fate and outlook for biological treatment. in Dehalogenation: Microbial Processes and Environmental Applications (eds. Häggblom, M.M. & Bossert, I.D.) 443–465 (Kluwer, Boston, 2003).

    Google Scholar 

  33. Pieper, D.H. & Seeger, M. Bacterial metabolism of polychlorinated biphenyls. J. Mol. Microbiol. Biotechnol. 15, 121–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Sen, S., Venkata Dasu, V. & Mandal, B. Developments in directed evolution for improving enzyme functions. Appl. Biochem. Biotechnol. 143, 212–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Weeks, A., Lund, L. & Raushel, F.M. Tunneling of intermediates in enzyme-catalyzed reactions. Curr. Opin. Chem. Biol. 10, 465–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Marco-Marín, C. et al. A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J. Mol. Biol. 367, 1431–1446 (2007).

    Article  PubMed  Google Scholar 

  37. Santos, C.N. & Stephanopoulos, G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 12, 168–176 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Lynch, M.D., Warnecke, T. & Gill, R.T. SCALEs: multiscale analysis of library enrichment. Nat. Methods 4, 87–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y.-X. et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644–646 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Patnaik, R. et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20, 707–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Dai, M.-H. & Copley, S.D. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl. Environ. Microbiol. 70, 2391–2397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de la Peña Mattozzi, M., Tehara, S.K., Hong, T. & Keasling, J.D. Mineralization of paraoxon and its use as a sole C and P source by a rationally designed catabolic pathway in Pseudomonas putida. Appl. Environ. Microbiol. 72, 6699–6706 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yan, D.Z., Liu, H. & Zhou, N.Y. Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl. Environ. Microbiol. 72, 2283–2286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haro, M.A. & de Lorenzo, V. Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J. Biotechnol. 85, 103–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Pharkya, P., Burgard, A.P. & Maranas, C.D. OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367–2376 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodrigo, G., Carrera, J., Prather, K.J. & Jaramillo, A. DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24, 2554–2556 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Pazos, F., Guijas, D., Valencia, A. & De Lorenzo, V. MetaRouter: bioinformatics for bioremediation. Nucleic Acids Res. 33, D588–D592 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Hou, B.K., Wackett, L.P. & Ellis, L.B. Microbial pathway prediction: a functional group approach. J. Chem. Inf. Comput. Sci. 43, 1051–1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Caspi, R. et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 36, D623–D631 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ellis, L.B., Hou, B.K., Kang, W. & Wackett, L.P. The University of Minnesota Biocatalysis/Biodegradation Database: post-genomic data mining. Nucleic Acids Res. 31, 262–265 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rui, L., Cao, L., Chen, W., Reardon, K.F. & Wood, T.K. Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. J. Biol. Chem. 279, 46810–46817 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Canada, K.A., Iwashita, S., Shim, H. & Wood, T.K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol. 184, 344–349 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pegg, S.C. et al. Leveraging enzyme structure-function relationships for functional inference and experimental design: the structure-function linkage database. Biochemistry 45, 2545–2555 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Persson, M. & Palcic, M.M. A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries. Anal. Biochem. 378, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Bershtein, S. & Tawfik, D.S. Advances in laboratory evolution of enzymes. Curr. Opin. Chem. Biol. 12, 151–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lavery, P., Brown, M.J. & Pope, A.J. Simple absorbance-based assays for ultra-high throughput screening. J. Biomol. Screen. 6, 3–9 (2001).

    CAS  PubMed  Google Scholar 

  58. Wong, E.Y. & Diamond, S.L. Enzyme microarrays assembled by acoustic dispensing technology. Anal. Biochem. 381, 101–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baker, K. et al. Chemical complementation: a reaction-independent genetic assay for enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 16537–16542 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Sengupta, D., Lin, H., Goldberg, S.D., Mahal, J.J. & Cornish, V.W. Correlation between catalytic efficiency and the transcription read-out in chemical complementation: a general assay for enzyme catalysis. Biochemistry 43, 3570–3581 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Lin, H., Tao, H. & Cornish, V.W. Directed evolution of a glycosynthase via chemical complementation. J. Am. Chem. Soc. 126, 15051–15059 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Topp, S. & Gallivan, J.P. Random walks to synthetic riboswitches–a high-throughput selection based on cell motility. ChemBioChem 9, 210–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. El Fantroussi, S. & Agathos, S.N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8, 268–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Thompson, I.P., van der Gast, C.J., Ciric, L. & Singer, A.C. Bioaugmentation for bioremediation: the challenge of strain selection. Environ. Microbiol. 7, 909–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Shames, S.L., Ash, D.E., Wedler, F.C. & Villafranca, J.J. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli. J. Biol. Chem. 259, 15331–15339 (1984).

    CAS  PubMed  Google Scholar 

  66. O'Brien, P.J. & Herschlag, D. Sulfatase activity of E. coli alkaline phosphatase demonstrates a functional link to arylsulfatases, an evolutionarily related enzyme family. J. Am. Chem. Soc. 120, 12369–12370 (1998).

    Article  CAS  Google Scholar 

  67. Anandarajah, K., Kiefer, P.M. & Copley, S.D. Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemistry 39, 5303–5311 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Warner, J.R. & Copley, S.D. Mechanism of the severe inhibition of tetrachlorohydroquinone dehalogenase by its aromatic substrates. Biochemistry 46, 4438–4447 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.D.C. acknowledges financial support from the US National Institutes of Health (GM078554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley D Copley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copley, S. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol 5, 559–566 (2009). https://doi.org/10.1038/nchembio.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.197

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing