Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct measurement of the ionization state of an essential guanine in the hairpin ribozyme

Abstract

Active site guanines are critical for self-cleavage reactions of several ribozymes, but their precise functions in catalysis are unclear. To learn whether protonated or deprotonated forms of guanine predominate in the active site, microscopic pKa values were determined for ionization of 8-azaguanosine substituted for G8 in the active site of a fully functional hairpin ribozyme in order to determine microscopic pKa values for 8-azaguanine deprotonation from the pH dependence of fluorescence. Microscopic pKa values above 9 for deprotonation of 8-azaguanine in the active site were about 3 units higher than apparent pKa values determined from the pH dependence of self-cleavage kinetics. Thus, the increase in activity with increasing pH does not correlate with deprotonation of G8, and most of G8 is protonated at neutral pH. These results do not exclude a role in proton transfer, but a simple interpretation is that G8 functions in the protonated form, perhaps by donating hydrogen bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of G8 in the hairpin ribozyme active site.
Figure 2: RNAs and complexes used for fluorescence experiments.
Figure 3: pH dependence of ribozyme cleavage kinetics and 8-azaguanine fluorescence emission intensity under various salt conditions.
Figure 4: pH dependence of 8azaG fluorescence emission intensity under various salt conditions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hampel, A. & Cowan, J.A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem. Biol. 4, 513–517 (1997).

    Article  CAS  Google Scholar 

  2. Nesbitt, S., Hegg, L.A. & Fedor, M.J. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem. Biol. 4, 619–630 (1997).

    Article  CAS  Google Scholar 

  3. Young, K.J., Gill, F. & Grasby, J.A. Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res. 25, 3760–3766 (1997).

    Article  CAS  Google Scholar 

  4. Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M. & Scott, W.G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595 (1998).

    Article  CAS  Google Scholar 

  5. Beringer, M. & Rodnina, M.V. The ribosomal peptidyl transferase. Mol. Cell 26, 311–321 (2007).

    Article  CAS  Google Scholar 

  6. Cochrane, J.C. & Strobel, S.A. Catalytic strategies of self-cleaving ribozymes. Acc. Chem. Res. 41, 1027–1035 (2008).

    Article  CAS  Google Scholar 

  7. Fedor, M. Comparative enzymology and structural biology of RNA self-cleavage. Annu. Rev. Biophys. 38, 271–299 (2009).

    Article  CAS  Google Scholar 

  8. van Tol, H., Buzayan, J.M., Feldstein, P.A., Eckstein, F. & Bruening, G. Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 18, 1971–1975 (1990).

    Article  CAS  Google Scholar 

  9. Rupert, P.B., Massey, A.P., Sigurdsson, S.T. & Ferré-D'Amaré, A.R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Article  CAS  Google Scholar 

  10. Torelli, A.T., Krucinska, J. & Wedekind, J.E. A comparison of vanadate to a 2′-5′ linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA 13, 1052–1070 (2007).

    Article  CAS  Google Scholar 

  11. Rupert, P.B. & Ferré-D'Amaré, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  Google Scholar 

  12. Martick, M. & Scott, W.G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  Google Scholar 

  13. Klein, D.J. & Ferré-D'Amaré, A.R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article  CAS  Google Scholar 

  14. Cochrane, J.C., Lipchock, S.V. & Strobel, S.A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  Google Scholar 

  15. Bevilacqua, P.C. Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42, 2259–2265 (2003).

    Article  CAS  Google Scholar 

  16. Pinard, R. et al. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J. 20, 6434–6442 (2001).

    Article  CAS  Google Scholar 

  17. Fedor, M.J. & Williamson, J.R. The catalytic diversity of RNAs. Nat. Rev. Mol. Cell Biol. 6, 399–412 (2005).

    Article  CAS  Google Scholar 

  18. Knobloch, B., Sigel, H., Okruszek, A. & Sigel, R.K. Acid-base properties of the nucleic-acid model 2′-deoxyguanylyl(5′ → 3′)-2′-deoxy-5′-guanylate, d(pGpG)3-, and of related guanine derivatives. Org. Biomol. Chem. 4, 1085–1090 (2006).

    Article  CAS  Google Scholar 

  19. Puglisi, J.D., Wyatt, J.R. & Tinoco, I. Jr . Solution conformation of an RNA hairpin loop. Biochemistry 29, 4215–4226 (1990).

    Article  CAS  Google Scholar 

  20. Lupták, A., Ferré-D'Amaré, A.R., Zhou, K., Zilm, K.W. & Doudna, J.A. Direct pKa measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. J. Am. Chem. Soc. 123, 8447–8452 (2001).

    Article  Google Scholar 

  21. Cai, Z. & Tinoco, I. Jr . Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. Biochemistry 35, 6026–6036 (1996).

    Article  CAS  Google Scholar 

  22. Ravindranathan, S., Butcher, S. & Feigon, J. Adenine protonation in domain B of the hairpin ribozyme. Biochemistry 39, 16026–16032 (2000).

    Article  CAS  Google Scholar 

  23. Gong, B. et al. Direct measurement of a pKa near neutrality for the catalytic cytosine in the genomic HDV ribozyme using Raman crystallography. J. Am. Chem. Soc. 129, 13335–13342 (2007).

    Article  CAS  Google Scholar 

  24. Wierzchowski, J., Wielgus-Kutrowska, B. & Shugar, D. Fluorescence emission properties of 8-azapurines and their nucleosides, and application to the kinetics of the reverse synthetic reaction of purine nucleoside phosphorylase. Biochim. Biophys. Acta 1290, 9–17 (1996).

    Article  Google Scholar 

  25. Da Costa, C.P., Fedor, M.J. & Scott, L.G. 8-Azaguanine reporter of purine ionization states in structured RNAs. J. Am. Chem. Soc. 129, 3426–3432 (2007).

    Article  CAS  Google Scholar 

  26. Fedor, M.J. Tertiary structure stabilization promotes hairpin ribozyme ligation. Biochemistry 38, 11040–11050 (1999).

    Article  CAS  Google Scholar 

  27. Joseph, S., Berzal-Herranz, A., Chowrira, B.M. & Burke, J.M. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev. 7, 130–138 (1993).

    Article  CAS  Google Scholar 

  28. Anderson, P. et al. Mutagenesis of the hairpin ribozyme. Nucleic Acids Res. 22, 1096–1100 (1994).

    Article  CAS  Google Scholar 

  29. Kuzmin, Y.I., Da Costa, C.P. & Fedor, M.J. Role of an active site guanine in hairpin ribozyme catalysis probed by exogenous nucleobase rescue. J. Mol. Biol. 340, 233–251 (2004).

    Article  CAS  Google Scholar 

  30. Kuzmin, Y.I., DaCosta, C.P., Cottrell, J. & Fedor, M.J. Contribution of an active site adenosine to hairpin ribozyme catalysis. J. Mol. Biol. 349, 989–1010 (2005).

    Article  CAS  Google Scholar 

  31. Nesbitt, S.M., Erlacher, H.A. & Fedor, M.J. The internal equilibrium of the hairpin ribozyme: temperature, ion and pH effects. J. Mol. Biol. 286, 1009–1024 (1999).

    Article  CAS  Google Scholar 

  32. Lebruska, L.L., Kuzmine, I.I. & Fedor, M.J. Rescue of an abasic hairpin ribozyme by cationic nucleobases. Evidence for a novel mechanism of RNA catalysis. Chem. Biol. 9, 465–473 (2002).

    Article  CAS  Google Scholar 

  33. Jencks, W.P. General acid-base catalysis. in Catalysis in Chemistry and Enzymology 163–242 (Dover Publications, Inc., New York, 1969).

    Google Scholar 

  34. Da Costa, C.P. & Sigel, H. Acid-base and metal ion binding properties of guanylyl(3′ → 5′)guanosine (GpG-) and 2′-deoxyguanylyl(3′ → 5′)-2′-deoxyguanosine [d(GpG)-] in aqueous solution. Inorg. Chem. 42, 3475–3482 (2003).

    Article  CAS  Google Scholar 

  35. Sigel, H. & Griesser, R. Nucleoside 5′-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem. Soc. Rev. 34, 875–900 (2005).

    Article  CAS  Google Scholar 

  36. Nakano, S., Chadalavada, D.M. & Bevilacqua, P.C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000).

    Article  CAS  Google Scholar 

  37. Nakano, S., Proctor, D.J. & Bevilacqua, P.C. Mechanistic characterization of the HDV genomic ribozyme: assessing the catalytic and structural contributions of divalent metal ions within a multichannel reaction mechanism. Biochemistry 40, 12022–12038 (2001).

    Article  CAS  Google Scholar 

  38. Park, H. & Lee, S. Role of solvent dynamics in stabilizing the transition state of RNA hydrolysis by hairpin ribozyme. J. Chem. Theory Comput. 2, 858–862 (2006).

    Article  CAS  Google Scholar 

  39. Rhodes, M.M., Reblova, K., Sponer, J. & Walter, N.G. Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proc. Natl. Acad. Sci. USA 103, 13380–13385 (2006).

    Article  CAS  Google Scholar 

  40. Salter, J., Krucinska, J., Alam, S., Grum-Tokars, V. & Wedekind, J.E. Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry 45, 686–700 (2006).

    Article  CAS  Google Scholar 

  41. Walter, N.G. Ribozyme catalysis revisited: is water involved? Mol. Cell 28, 923–929 (2007).

    Article  CAS  Google Scholar 

  42. Nam, K., Gao, J. & York, D.M. Electrostatic interactions in the hairpin ribozyme account for the majority of the rate acceleration without chemical participation by nucleobases. RNA 14, 1501–1507 (2008).

    Article  CAS  Google Scholar 

  43. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

  44. Johnson, I. Fluorescent probes for living cells. Histochem. J. 30, 123–140 (1998).

    Article  CAS  Google Scholar 

  45. Virta, P. et al. Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives. Org. Biomol. Chem. 3, 2924–2929 (2005).

    Article  CAS  Google Scholar 

  46. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific LLC, San Carlos, California, USA, 2004).

    Google Scholar 

Download references

Acknowledgements

We thank the Fedor lab for help with manuscript preparation. This work was supported by US National Institutes of Health grant GM046422 and by a postdoctoral fellowship provided by the Skaggs Institute for Chemical Biology to L.L.

Author information

Authors and Affiliations

Authors

Contributions

L.L., J.W.C. and M.J.F. designed the experiments, interpreted the results and prepared the manuscript. L.G.S. synthesized 8azaGTP and developed methods for using 8azaGTP in transcription reactions. L.L. and J.W.C. prepared the RNAs and carried out self-cleavage and fluorescence assays.

Corresponding author

Correspondence to Martha J Fedor.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Methods (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Cottrell, J., Scott, L. et al. Direct measurement of the ionization state of an essential guanine in the hairpin ribozyme. Nat Chem Biol 5, 351–357 (2009). https://doi.org/10.1038/nchembio.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing