Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo

Abstract

Here we report on in vivo measurement of the mechanical behavior of a cell surface sensor using single-molecule atomic force microscopy. We focus on the yeast wall stress component sensor Wsc1, a plasma membrane protein that is thought to function as a rigid probe of the cell wall status. We first map the distribution of individual histidine-tagged sensors on living yeast cells by scanning the cell surface with atomic force microscopy tips carrying nitrilotriacetate groups. We then show that Wsc1 behaves like a linear nanospring that is capable of resisting high mechanical force and of responding to cell surface stress. Both a genomic pmt4 deletion and the insertion of a stretch of glycines in Wsc1 result in substantial alterations in protein spring properties, supporting the important role of glycosylation at the extracellular serine/threonine-rich region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM detects single Wsc1 sensors on live cells.
Figure 2: Wsc1 behaves as a linear spring.
Figure 3: The spring properties of Wsc1 require glycosylation of the serine/threonine region.
Figure 4: The nanospring behavior measured for elongated Wsc1 is not substantially altered by the Mid2 elongation.

Similar content being viewed by others

References

  1. Klis, F.M., Boorsma, A. & De Groot, P.W. Cell wall construction in Saccharomyces cerevisiae. Yeast 23, 185–202 (2006).

    Article  CAS  Google Scholar 

  2. Levin, D.E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 262–291 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  3. Straede, A. & Heinisch, J.J. Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett. 581, 4495–4500 (2007).

    Article  CAS  Google Scholar 

  4. Piao, H.L., Machado, I.M. & Payne, G.S. NPFXD-mediated endocytosis is required for polarity and function of a yeast cell wall stress sensor. Mol. Biol. Cell 18, 57–65 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  5. Heinisch, J.J. Bakers yeast as a tool for the development of antifungal drugs which target cell integrity—an update. Expert Opin. Drug Discov. 3, 931–943 (2008).

    Article  CAS  Google Scholar 

  6. Rodicio, R., Buchwald, U., Schmitz, H.P. & Heinisch, J.J. Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet. Biol. 45, 422–435 (2008).

    Article  CAS  Google Scholar 

  7. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  8. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  9. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  10. Fernandez, J.M. & Li, H. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    Article  CAS  Google Scholar 

  11. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  12. Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007).

    Article  CAS  Google Scholar 

  13. Müller, D.J. & Dufrêne, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    Article  Google Scholar 

  14. Ahimou, F.O., Touhami, A. & Dufrêne, Y.F. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20, 25–30 (2003).

    Article  CAS  Google Scholar 

  15. Koch, Y. & Rademacher, K. Chemical and enzymatic changes in the cell walls of Candida albicans and Saccharomyces cerevisiae by scanning microscopy. Can. J. Microbiol. 26, 965–970 (1980).

    Article  CAS  Google Scholar 

  16. Verbelen, C., Gruber, H.J. & Dufrêne, Y.F. The NTA-His6 bond is strong enough for AFM single-molecular recognition studies. J. Mol. Recognit. 20, 490–494 (2007).

    Article  CAS  Google Scholar 

  17. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  18. Hinterdorfer, P. & Dufrêne, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  19. Lata, S., Reichel, A., Brock, R., Tampé, R. & Piehler, J. High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 127, 10205–10215 (2005).

    Article  CAS  Google Scholar 

  20. Krieg, M., Helenius, J., Heisenberg, C.-P. & Muller, D.J. A Bond for a lifetime: employing membrane nanotubes from living cells to determine receptor–ligand kinetics. Angew. Chem. Int. Ed. 47, 9775–9777 (2008).

    Article  CAS  Google Scholar 

  21. Willer, T., Valero, M.C., Tanner, W., Cruces, J. & Strahl, S. O-mannosyl glycans: from yeast to novel associations with human disease. Curr. Opin. Struct. Biol. 13, 621–630 (2003).

    Article  CAS  Google Scholar 

  22. Jentoft, N. Why are proteins O-glycosylated? Trends Biochem. Sci. 15, 291–294 (1990).

    Article  CAS  Google Scholar 

  23. Lodder, A.L., Lee, T.K. & Ballester, R. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae. Genetics 152, 1487–1499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajavel, M., Philip, B., Buehrer, B.M., Errede, B. & Levin, D.E. Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 3969–3976 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  25. Philip, B. & Levin, D.E. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell. Biol. 21, 271–280 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  26. Lommel, M., Bagnat, M. & Strahl, S. Abberant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol. Cell. Biol. 24, 46–57 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  27. Powell, C.D., Quain, D.E. & Smart, K.A. Chitin scar breaks in aged Saccharomyces cerevisiae. Microbiology 149, 3129–3137 (2003).

    Article  CAS  Google Scholar 

  28. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

    Article  CAS  Google Scholar 

  29. Schlierf, M. & Rief, M. Temperature softening of a protein in single-molecule experiments. J. Mol. Biol. 354, 497–503 (2005).

    Article  CAS  Google Scholar 

  30. Law, R. et al. Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains. Biophys. J. 85, 3286–3293 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  31. Dubreuil, R.R. Functional links between membrane transport and the spectrin cytoskeleton. J. Membr. Biol. 211, 151–161 (2006).

    Article  CAS  Google Scholar 

  32. Julien, M.A., Wang, P., Haller, C.A., Wen, J. & Chaikof, E.L. Mechanical strain regulates syndecan-4 expression and shedding in smooth muscle cells through differential activation of MAP kinase signaling pathways. Am. J. Physiol. Cell Physiol. 292, C517–C525 (2007).

    Article  CAS  Google Scholar 

  33. Becker, N. et al. Molecular nanosprings in spider capture-like threads. Nat. Mater. 2, 278–283 (2003).

    Article  CAS  Google Scholar 

  34. Straede, A., Corran, A., Bundy, J. & Heinisch, J.J. The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling. Yeast 24, 321–334 (2007).

    Article  CAS  Google Scholar 

  35. Arvanitidis, A. & Heinisch, J.J. Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis. J. Biol. Chem. 269, 8911–8918 (1994).

    CAS  PubMed  Google Scholar 

  36. Gietz, R.D. & Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Belgian National Foundation for Scientific Research (FNRS), the Université catholique de Louvain (Fonds Spéciaux de Recherche), the Région wallonne, the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), and the Research Department of the Communauté française de Belgique (Concerted Research Action). Work at the University of Osnabrück was funded by the Deutsche Forschungsgemeinschaft within the framework of the SFB431.

Author information

Authors and Affiliations

Authors

Contributions

V.D., D.A., S.W., B.H., J.J.H. and Y.F.D. designed the experiments, analyzed the data and wrote the article. S.W., B.H. and J.J.H. performed the genetic manipulations. V.D. and D.A. collected the AFM data.

Corresponding authors

Correspondence to Jürgen J Heinisch or Yves F Dufrêne.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupres, V., Alsteens, D., Wilk, S. et al. The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5, 857–862 (2009). https://doi.org/10.1038/nchembio.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing