Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate

Abstract

Engineering enzymes to degrade anthropogenic compounds efficiently is challenging. We obtained Rhodococcus rhodochrous haloalkane dehalogenase mutants with up to 32-fold higher activity than wild type toward the toxic, recalcitrant anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. We identified key residues in access tunnels connecting the buried active site with bulk solvent by rational design and randomized them by directed evolution. The most active mutant has large aromatic residues at two out of three randomized positions and two positions modified by site-directed mutagenesis. These changes apparently enhance activity with TCP by decreasing accessibility of the active site for water molecules, thereby promoting activated complex formation. Kinetic analyses confirmed that the mutations improved carbon-halogen bond cleavage and shifted the rate-limiting step to the release of products. Engineering access tunnels by combining computer-assisted protein design with directed evolution may be a valuable strategy for refining catalytic properties of enzymes with buried active sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hot spot residues lining the access tunnels selected for mutagenesis by computer simulations.
Figure 2: Characteristics of mutants with enhanced activity against TCP.
Figure 3: Structural basis of enhanced activity against TCP.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Doyle, S.A., Fung, S.Y. & Koshland, D.E. Jr. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase. Biochemistry 39, 14348–14355 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Whittle, E. & Shanklin, J. Engineering delta 9–16:0-acyl carrier protein (ACP) desaturase specificity based on combinatorial saturation mutagenesis and logical redesign of the castor delta 9–18:0-ACP desaturase. J. Biol. Chem. 276, 21500–21505 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wymer, N. et al. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure 9, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Reetz, M.T., Wang, L.W. & Bocola, M. Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew. Chem. Int. Edn Engl. 45, 1236–1241 (2006).

    Article  CAS  Google Scholar 

  5. Fox, R.J. et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bartsch, S., Kourist, R. & Bornscheuer, U.T. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew. Chem. Int. Edn Engl. 47, 1508–1511 (2008).

    Article  Google Scholar 

  7. Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  PubMed  Google Scholar 

  8. Woycechowsky, K.J., Vamvaca, K. & Hilvert, D. Novel enzymes through design and evolution. Adv. Enzymol. 75, 241–294 (2007).

    CAS  PubMed  Google Scholar 

  9. Morley, K.L. & Kazlauskas, R.J. Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 23, 231–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. van der Meer, J.R., Devos, W.M., Harayama, S. & Zehnder, A.J.B. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677–694 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Janssen, D.B., Dinkla, I.J., Poelarends, G.J. & Terpstra, P. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ. Microbiol. 7, 1868–1882 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Swanson, P.E. Dehalogenases applied to industrial-scale biocatalysis. Curr. Opin. Biotechnol. 10, 365–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yujing, M. & Mellouki, A. Rate constants for the reactions of OH with chlorinated propanes. Phys. Chem. Chem. Phys. 3, 2614–2617 (2001).

    Article  Google Scholar 

  14. Bosma, T., Damborsky, J., Stucki, G. & Janssen, D.B. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl. Environ. Microbiol. 68, 3582–3587 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bosma, T., Kruizinga, E., de Bruin, E.J., Poelarends, G.J. & Janssen, D.B. Utilization of trihalogenated propanes by Agrobacterium radiobacter AD1 through heterologous expression of the haloalkane dehalogenase from Rhodococcus sp. strain m15–3. Appl. Environ. Microbiol. 65, 4575–4581 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yokota, T., Omori, T. & Kodama, T. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15–3. J. Bacteriol. 169, 4049–4054 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janssen, D.B. et al. Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur. J. Biochem. 171, 67–72 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Sallis, P.J., Armfield, S.J., Bull, A.T. & Hardman, D.J. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J. Gen. Microbiol. 136, 115–120 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Kulakova, A.N., Larkin, M.J. & Kulakov, L.A. The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143, 109–115 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Poelarends, G.J., Wilkens, M., Larkin, M.J., van Elsas, J.D. & Janssen, D.B. Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170. Appl. Environ. Microbiol. 64, 2931–2936 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Newman, J. et al. Haloalkane dehalogenase: structure of a Rhodococcus enzyme. Biochemistry 38, 16105–16114 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Otyepka, M. & Damborsky, J. Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Sci. 11, 1206–1217 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verschueren, K.H.G., Seljee, F., Rozeboom, H.J., Kalk, K.H. & Dijkstra, B.W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gray, K.A. et al. Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv. Synth. Catal. 343, 607–617 (2001).

    Article  CAS  Google Scholar 

  25. Banas, P., Otyepka, M., Jerabek, P., Petrek, M. & Damborsky, J. Mechanism of enhanced conversion of 1,2,3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling. J. Comput. Aided Mol. Des. 20, 375–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Petrek, M. et al. CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winn, P.J., Ludemann, S.K., Gauges, R., Lounnas, V. & Wade, R.C. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine. Proc. Natl. Acad. Sci. USA 99, 5361–5366 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pavelka, A., Chovancova, E. & Damborsky, J. HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 37 (web server issue): W376–W383 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chovancova, E., Kosinski, J., Bujnicki, J.M. & Damborsky, J. Phylogenetic analysis of haloalkane dehalogenases. Proteins Struct. Funct. Bioinf. 67, 305–316 (2007).

    Article  CAS  Google Scholar 

  30. Neylon, C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res. 32, 1448–1459 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bosma, T., Pikkemaat, M.G., Kingma, J., Dijk, J. & Janssen, D.B. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase. Biochemistry 42, 8047–8053 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Schanstra, J.P. & Janssen, D.B. Kinetics of halide release of haloalkane dehalogenase: evidence for a slow conformational change. Biochemistry 35, 5624–5632 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Prokop, Z. et al. Catalytic mechamism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J. Biol. Chem. 278, 45094–45100 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Aharoni, A. et al. The “evolvability” of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Stucki, G. & Thuer, M. Experiences of a large-scale application of 1,2-dichloroethane degrading microorganisms for groundwater treatment. Environ. Sci. Technol. 29, 2339–2345 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Hur, S., Kahn, K. & Bruice, T.C. Comparison of formation of reactive conformers for the SN2 displacements by CH3CO2- in water and by Asp124–CO2- in a haloalkane dehalogenase. Proc. Natl. Acad. Sci. USA 100, 2215–2219 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Devi-Kesavan, L.S. & Gao, J. Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase. J. Am. Chem. Soc. 125, 1532–1540 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Olsson, M.H. & Warshel, A. Solute solvent dynamics and energetics in enzyme catalysis: the S(N)2 reaction of dehalogenase as a general benchmark. J. Am. Chem. Soc. 126, 15167–15179 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Marek, J. et al. Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry 39, 14082–14086 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Chaloupkova, R. et al. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J. Biol. Chem. 278, 52622–52628 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Schleinkofer, K., Sudarko, Winn, P.J., Ludemann, S.K. & Wade, R.C. Do mammalian cytochrome P450s show multiple ligand access pathways and ligand channelling? EMBO Rep. 6, 584–589 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cojocaru, V., Winn, P.J. & Wade, R.C. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta 1770, 390–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Carmichael, A.B. & Wong, L.L. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur. J. Biochem. 268, 3117–3125 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Schmitt, J., Brocca, S., Schmid, R.D. & Pleiss, J. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity. Prot. Eng. 15, 595–601 (2002).

    Article  CAS  Google Scholar 

  45. Lauble, H. et al. Structure determinants of substrate specificity of hydroxynitrile lyase from Manihot esculenta. Protein Sci. 11, 65–71 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fishman, A., Tao, Y., Bentley, W.E. & Wood, T.K. Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene. Biotechnol. Bioeng. 87, 779–790 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Fedorov, R., Vasan, R., Ghosh, D.K. & Schlichting, I. Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design. Proc. Natl. Acad. Sci. USA 101, 5892–5897 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kotik, M., Stepanek, V., Kyslik, P. & Maresova, H. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering. J. Biotechnol. 132, 8–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Feingersch, R., Shainsky, J., Wood, T.K. & Fishman, A. Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides. Appl. Environ. Microbiol. 74, 1555–1566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwasaki, I., Utsumi, S. & Ozawa, T. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull. Chem. Soc. Jpn. 25, 226 (1952).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. de Lorenzo (Centro Nacional de Biotecnologia, Spain) and U. Bornscheuer (University Greifswald, Germany) for critical reading of this manuscript. R.C.W. gratefully acknowledges the support of the Klaus Tschira Foundation and M.P. acknowledges a scholarship from the Japan Society for Promotion of Science. We acknowledge financial support from the Ministry of Education of the Czech Republic (LC06010 and MSM0021622412), the Grant Agency of the Czech Republic (201/07/0927 and 203/08/0114), the Grant Agency of the Czech Academy of Sciences (IAA401630901), the North Atlantic Treaty Organization (EST.CLG.980504), and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology, Japan and the Ministry of Agriculture, Forestry, and Fisheries, Japan. We acknowledge the Supercomputing Centre Brno for computational resources.

Author information

Authors and Affiliations

Authors

Contributions

M.P. performed mutagenesis and activity measurements; M.K. performed molecular modeling and designed mutants; Z.P. performed pre-steady state kinetics measurements; R.C. performed CD spectroscopy measurements and solvent kinetic isotopic effect measurements; P.B. and M.O. designed mutants; R.C.W. contributed the RAMD modeling tool; M.T. and Y.N. contributed molecular biology tools; J.D. interpreted data and designed mutants. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Jiri Damborsky.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3 and Supplementary Methods (PDF 826 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, M., Klvana, M., Prokop, Z. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5, 727–733 (2009). https://doi.org/10.1038/nchembio.205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing