Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cooperativity in macromolecular assembly

Abstract

The thermodynamic principle of cooperativity is used to drive the formation of specific macromolecular complexes during the assembly of a macromolecular machine. Understanding cooperativity provides insight into the mechanisms that govern assembly and disassembly of multicomponent complexes. Our understanding of assembly mechanisms is lagging considerably behind our understanding of the structure and function of these complexes. A significant challenge remains in tackling the thermodynamics and kinetics of the intermolecular interactions required for all cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamic cycles and cooperativity.
Figure 2: Mechanisms of cooperativity.
Figure 3: Physical models for assembly.
Figure 4: Cooperativity in Notch signaling.
Figure 5: Cooperativity in 30S ribosome assembly.
Figure 6: Kinetic traps, cofactors and chaperones.

Similar content being viewed by others

References

  1. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  Google Scholar 

  2. Perutz, M.F., Wilkinson, A.J., Paoli, M. & Dodson, G.G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).

    Article  CAS  Google Scholar 

  3. Dill, K.A. et al. Principles of protein-folding—a perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  4. Horovitz, A. & Fersht, A.R. Strategy for analyzing the cooperativity of intramolecular interactions in peptides and proteins. J. Mol. Biol. 214, 613–617 (1990).

    Article  CAS  Google Scholar 

  5. Kranz, J.K. & Hall, K.B. RNA recognition by the human U1A protein is mediated by a network of local cooperative interactions that create the optimal binding surface. J. Mol. Biol. 285, 215–231 (1999).

    Article  CAS  Google Scholar 

  6. Olson, A.J., Hu, Y.H.E. & Keinan, E. Chemical mimicry of viral capsid self-assembly. Proc. Natl. Acad. Sci. USA 104, 20731–20736 (2007).

    Article  CAS  Google Scholar 

  7. Ackers, G.K., Johnson, A.D. & Shea, M.A. Quantitative model for gene-regulation by lambda-phage repressor. Proc. Natl. Acad. Sci. USA 79, 1129–1133 (1982).

    Article  CAS  Google Scholar 

  8. Johnson, A.D. et al. Lambda-repressor and cro—components of an efficient molecular switch. Nature 294, 217–223 (1981).

    Article  CAS  Google Scholar 

  9. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  10. Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  11. De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

  12. Petcherski, A.G. & Kimble, J. LAG-3 is a putative transcriptional activator in the C-elegans Notch pathway. Nature 405, 364–368 (2000).

    Article  CAS  Google Scholar 

  13. Nam, Y., Sliz, P., Song, L.Y., Aster, J.C. & Blacklow, S.C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006).

    Article  CAS  Google Scholar 

  14. Del Bianco, C., Aster, J.C. & Blacklow, S.C. Mutational and energetic studies of notch1 transcription complexes. J. Mol. Biol. 376, 131–140 (2008).

    Article  CAS  Google Scholar 

  15. Held, W.A., Ballou, B., Mizushima, S. & Nomura, M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J. Biol. Chem. 249, 3103–3111 (1974).

    CAS  PubMed  Google Scholar 

  16. Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102, 615–623 (2000).

    Article  CAS  Google Scholar 

  17. Wimberly, B.T. et al. The structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  18. Recht, M.I. & Williamson, J.R. Central domain assembly: thermodynamics and kinetics of S6 and S18 binding to and S15-RNA complex. J. Mol. Biol. 313, 35–48 (2001).

    Article  CAS  Google Scholar 

  19. Recht, M.I. & Williamson, J.R. RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. J. Mol. Biol. 344, 395–407 (2004).

    Article  CAS  Google Scholar 

  20. Dill, K.A., Fiebig, K.M. & Chan, H.S. Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993).

    Article  CAS  Google Scholar 

  21. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  22. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  Google Scholar 

  23. Hirano, Y. et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 24, 977–984 (2006).

    Article  CAS  Google Scholar 

  24. Hirano, Y. et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437, 1381–1385 (2005).

    Article  CAS  Google Scholar 

  25. Kusmierczyk, A.R., Kunjappu, M.J., Funakoshi, M. & Hochstrasser, M. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct. Mol. Biol. 15, 237–244 (2008).

    Article  CAS  Google Scholar 

  26. Le Tallec, B. et al. 20S proteasome assembly is orchestrated by two of chaperones in yeast distinct pairs and in mammals. Mol. Cell 27, 660–674 (2007).

    Article  CAS  Google Scholar 

  27. Li, X., Kusmierczyk, A.R., Wong, P., Emili, A. & Hochstrasser, M. β-subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J. 26, 2339–2349 (2007).

    Article  CAS  Google Scholar 

  28. Yashiroda, H. et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 15, 228–236 (2008).

    Article  CAS  Google Scholar 

  29. Rosenzweig, R. & Glickman, M.H. Forging a proteasome alpha-ring with dedicated proteasome chaperones. Nat. Struct. Mol. Biol. 15, 218–220 (2008).

    Article  CAS  Google Scholar 

  30. Pollard, T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477 (2007).

    Article  CAS  Google Scholar 

  31. Torres, F.E. et al. Enthalpy arrays. Proc. Natl. Acad. Sci. USA 101, 9517–9522 (2004).

    Article  CAS  Google Scholar 

  32. Velazquez-Campoy, A. & Freire, E. ITC in the post-genomic era...? Priceless. Biophys. Chem. 115, 115–124 (2005).

    Article  CAS  Google Scholar 

  33. Gracias, D.H., Tien, J., Breen, T.L., Hsu, C. & Whitesides, G.M. Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks S. Edgcomb for helpful discussions and critical reading of the manuscript, S. Blacklow for critical comments and E. Vogel of Leonardo's Basement for the photo of the large Soma cube. This work was supported by a grant from the US National Institutes of Health (GM-53757 to J.R.W.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, J. Cooperativity in macromolecular assembly. Nat Chem Biol 4, 458–465 (2008). https://doi.org/10.1038/nchembio.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing