Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid–type III polyketide synthase

Abstract

Differentiation-inducing factors (DIFs) are well known to modulate formation of distinct communal cell types from identical Dictyostelium discoideum amoebas, but DIF biosynthesis remains obscure. We report complimentary in vivo and in vitro experiments identifying one of two 3,000-residue D. discoideum proteins, termed 'steely', as responsible for biosynthesis of the DIF acylphloroglucinol scaffold. Steely proteins possess six catalytic domains homologous to metazoan type I fatty acid synthases (FASs) but feature an iterative type III polyketide synthase (PKS) in place of the expected FAS C-terminal thioesterase used to off load fatty acid products. This new domain arrangement likely facilitates covalent transfer of steely N-terminal acyl products directly to the C-terminal type III PKS active sites, which catalyze both iterative polyketide extension and cyclization. The crystal structure of a steely C-terminal domain confirms conservation of the homodimeric type III PKS fold. These findings suggest new bioengineering strategies for expanding the scope of fatty acid and polyketide biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthesis of D. discoideum DIF-1.
Figure 2: D. discoideum type III PKSs occur as C-terminal domains of steely FAS-PKS hybrids.
Figure 3: Hexanoyl-primed in vitro product specificity of steely C-terminal type III PKS domains.
Figure 4: Steely gene expression and DIF-1 synthesis by steely null mutants.
Figure 5: Development of Steely2 mutant and rescue by DIF-1.
Figure 6: Crystal structure of Steely1 C-terminal domain confirms conservation of the PKS III fold, homodimeric assembly and internal active site cavity.
Figure 7: Steely1 type III PKS homodimer suggests functional similarity of steely hybridization interface to modular type I PKS interfaces.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Kessin, R.H. Dictyostelium (Cambridge University Press, Cambridge, UK, 2001).

    Book  Google Scholar 

  2. Morris, H.R., Taylor, G.W., Masento, M.S., Jermyn, K.A. & Kay, R.R. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 328, 811–814 (1987).

    Article  CAS  Google Scholar 

  3. Thompson, C.R. & Kay, R.R. The role of DIF-1 signaling in Dictyostelium development. Mol. Cell 6, 1509–1514 (2000).

    Article  CAS  Google Scholar 

  4. Gokan, N. et al. Structural requirements of Dictyostelium differentiation-inducing factors for their stalk-cell-inducing activity in Dictyostelium cells and anti-proliferative activity in K562 human leukemic cells. Biochem. Pharmacol. 70, 676–685 (2005).

    Article  CAS  Google Scholar 

  5. Kay, R.R. The biosynthesis of differentiation-inducing factor, a chlorinated signal molecule regulating Dictyostelium development. J. Biol. Chem. 273, 2669–2675 (1998).

    Article  CAS  Google Scholar 

  6. Ferrer, J.L., Jez, J.M., Bowman, M.E., Dixon, R.A. & Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775–784 (1999).

    Article  CAS  Google Scholar 

  7. Schröder, J. The family of chalcone synthase-related proteins: functional diversity and evolution. Recent Adv. Phytochem. 34, 55–89 (2000).

    Article  Google Scholar 

  8. Austin, M.B. & Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  Google Scholar 

  9. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    Article  CAS  Google Scholar 

  10. Chirala, S.S. & Wakil, S.J. Structure and function of animal fatty acid synthase. Lipids 39, 1045–1053 (2004).

    Article  CAS  Google Scholar 

  11. Asturias, F.J. et al. Structure and molecular organization of mammalian fatty acid synthase. Nat. Struct. Mol. Biol. 12, 225–232 (2005).

    Article  CAS  Google Scholar 

  12. Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty synthase at 4.5 A resolution. Science 311, 1258–1262 (2006).

    Article  CAS  Google Scholar 

  13. Khosla, C., Gokhale, R.S., Jacobsen, J.R. & Cane, D.E. Tolerance and specificity of polyketide synthases. Annu. Rev. Biochem. 68, 219–253 (1999).

    Article  CAS  Google Scholar 

  14. Staunton, J. & Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  15. Jez, J.M. et al. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7, 919–930 (2000).

    Article  CAS  Google Scholar 

  16. Jez, J.M., Bowman, M.E. & Noel, J.P. Structure-guided programming of polyketide chain-length determination in chalcone synthase. Biochemistry 40, 14829–14838 (2001).

    Article  CAS  Google Scholar 

  17. Rangan, V.S., Joshi, A.K. & Smith, S. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry 40, 10792–10799 (2001).

    Article  CAS  Google Scholar 

  18. Tillett, D. et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem. Biol. 7, 753–764 (2000).

    Article  CAS  Google Scholar 

  19. Tsai, S.C. et al. Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. Proc. Natl. Acad. Sci. USA 98, 14808–14813 (2001).

    Article  CAS  Google Scholar 

  20. Brookman, J.J., Town, C.D., Jermyn, K.A. & Kay, R.R. Developmental regulation of stalk cell differentiation-inducing factor in Dictyostelium discoideum. Dev. Biol. 91, 191–196 (1982).

    Article  CAS  Google Scholar 

  21. Morandini, P. et al. The proximal pathway of metabolism of the chlorinated signal molecule differentiation-inductin factor-1 (DIF-1) in the cellular slime mould Dictyostelium. Biochem. J. 306, 735–743 (1995).

    Article  CAS  Google Scholar 

  22. Austin, M.B., Bowman, M.E., Ferrer, J., Schröder, J. & Noel, J.P. An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketides synthases. Chem. Biol. 11, 1179–1194 (2004).

    Article  CAS  Google Scholar 

  23. Austin, M.B. et al. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J. Biol. Chem. 279, 45162–45174 (2004).

    Article  CAS  Google Scholar 

  24. Sankaranarayanan, R. et al. A novel tunnel in mycobacterial type III polyketide synthase reveals the structural basis for generating diverse metabolites. Nat. Struct. Mol. Biol. 11, 894–900 (2004).

    Article  CAS  Google Scholar 

  25. Seshime, Y., Juvvadi, P.R., Fujii, I. & Kitamoto, K. Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 331, 253–260 (2005).

    Article  CAS  Google Scholar 

  26. Morris, H.R., Masento, M.S., Taylor, G.W., Jermyn, K.A. & Kay, R.R. Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mould Dictyostelium discoideum. Biochem. J. 249, 903–906 (1988).

    Article  CAS  Google Scholar 

  27. Serafimidis, I. & Kay, R.R. New prestalk and prespore inducing signals in Dictyostelium. Dev. Biol. 282, 432–441 (2005).

    Article  CAS  Google Scholar 

  28. Takaya, Y. et al. Novel acyl alpha-pyronoids, dictyopyrone A, B, and C, from Dictyostelium cellular slime molds. J. Org. Chem. 65, 985–989 (2000).

    Article  CAS  Google Scholar 

  29. Witkowski, A. et al. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase. Chem. Biol. 11, 1667–1676 (2004).

    Article  CAS  Google Scholar 

  30. Menzella, H.G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol. 23, 1171–1176 (2005).

    Article  CAS  Google Scholar 

  31. Abe, I., Utsumi, Y., Oguro, S. & Noguchi, H. The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. FEBS Lett. 562, 171–176 (2004).

    Article  CAS  Google Scholar 

  32. Abe, I. et al. A plant type III polyketide synthase that produces pentaketide chromone. J. Am. Chem. Soc. 127, 1362–1363 (2005).

    Article  CAS  Google Scholar 

  33. Abe, I., Watanabe, T. & Noguchi, H. Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry 65, 2447–2453 (2004).

    Article  CAS  Google Scholar 

  34. Jez, J.M., Ferrer, J.L., Bowman, M.E., Dixon, R.A. & Noel, J.P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890–902 (2000).

    Article  CAS  Google Scholar 

  35. Funa, N., Ohnishi, Y., Ebizuka, Y. & Horinouchi, S. Properties and substrate specificity of RppA, a chalcone synthase- related polyketide synthase in Streptomyces griseus. J. Biol. Chem. 277, 4628–4635 (2002).

    Article  CAS  Google Scholar 

  36. Kay, R.R. Cell differentiation in monolayers and the investigation of slime mold morphogens. Methods Cell Biol. 28, 433–448 (1987).

    Article  CAS  Google Scholar 

  37. Abe, T., Langenick, J. & Williams, J.G. Rapid generation of gene disruption constructs by in vitro transposition and identification of a Dictyostelium protein kinase that regulates its rate of growth and development. Nucleic Acids Res. 31, e107 (2003).

    Article  Google Scholar 

  38. Saito, T. & Ochiai, H. Identification of delta5-fatty acid desaturase from the cellular slime mold Dictyostelium discoideum. Eur. J. Biochem. 265, 809–814 (1999).

    Article  CAS  Google Scholar 

  39. Masento, M.S. et al. Differentiation-inducing factor from the slime mould Dictyostelium discoideum and its analogues. Biochem. J. 256, 23–28 (1988).

    Article  CAS  Google Scholar 

  40. Dodson, E.J., Winn, M. & Ralph, A. Collaborative Computational Project, Number 4: providing programs for protein crystallography. Methods Enzymol. 277, 620–633 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. discoideum genomic DNA was a gift from R. Firtel and S. Merlot (University of California, San Diego). We also thank S. Horinouchi and N. Funa (University of Tokyo) for providing the synthetic PCP authentic standard, R. Schaloske (University of California, San Diego) for discussion of (A+T)-rich PCR and T. Baiga (Salk Institute) and N. Funa for discussion of LC-MS-MS. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work was supported by the National Institutes of Health Grant AI52443 (B.S.M. and J.P.N.), the Hayashi Memorial Foundation (T.S.) and core support from the Medical Research Council (R.R.K.). J.P.N. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.B.A., conceptualization of project, in vitro experimental design, bioinformatic analysis from raw sequencing contigs, execution and analysis of the in vitro data including enzyme assays and structural elucidation, and substantial drafting of the manuscript; T.S., conceptualization of project, experimental design, execution and analysis of in vivo data including knockouts and complementation, and drafting of manuscript; M.E.B., expression, purification and crystallization of steely proteins; S.H., genome annotation, data analysis and interpretation; A.K., experimental assistance; B.S.M., funding and manuscript editing; R.R.K. and J.P.N., principal investigators of the project, experimental concept and design, data analysis, manuscript editing and funding.

Corresponding authors

Correspondence to Robert R Kay or Joseph P Noel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

In metazoan type 1 FASs and related type 1 PKSs, a C-terminal TE domain catalyzes the hydrolytic release of enzymatic products from the prosthetic Ppant arm of the adjacent ACP domain. (PDF 236 kb)

Supplementary Fig. 2

Acyl-thioester starter specificities of steely C-terminal type 3 PKS domains in comparison to alfalfa CHS. (PDF 456 kb)

Supplementary Fig. 3

LC-MS-MS analysis of all hexanoyl-primed products of in vitro enzyme assays with malonyl-CoA. (PDF 405 kb)

Supplementary Fig. 4

LC-MS-MS analysis of all butanoyl-primed products of in vitro enzyme assays with malonyl-CoA. (PDF 381 kb)

Supplementary Fig. 5

Transformed clones were screened for disruption of the Steely1 (stlA) and Steely2 (stlB) loci by genomic PCR using primers. (PDF 77 kb)

Supplementary Table 1

Data collection and refinement statistics. (PDF 70 kb)

Supplementary Methods (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, M., Saito, T., Bowman, M. et al. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid–type III polyketide synthase. Nat Chem Biol 2, 494–502 (2006). https://doi.org/10.1038/nchembio811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing