Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Modular approaches to expanding the functions of living matter

Abstract

The synthesis of increasingly complex unnatural networks embedded in living matter is an emerging theme in synthetic biology. Synthetic networks have allowed the creation of organisms endowed with toggle switches, logic gates, pattern-forming systems, oscillators, cellular sensors, new modes of gene regulation and expanded genetic codes. A common challenge of this work is the addition of specific new functions to complex living organisms. This requires spatial and temporal control of molecular interactions and fluxes to achieve the desired outcomes. Here we review recent successes in this emerging field and discuss strategies for addressing the challenges of increasing network complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New functions from repressor circuits.
Figure 2: A pattern-forming circuit.
Figure 3: Examples of unnatural signal transduction.
Figure 4: Expanding the genetic code.
Figure 5: Synthetic post-transcriptional gene regulation.
Figure 6: Orthogonal translation.

Similar content being viewed by others

References

  1. Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    CAS  PubMed  Google Scholar 

  2. Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. USA 102, 13773–13778 (2005).

    CAS  PubMed  Google Scholar 

  3. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli . Nature 403, 339–342 (2000).

    CAS  Google Scholar 

  4. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    CAS  PubMed  Google Scholar 

  5. Kramer, B.P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    CAS  PubMed  Google Scholar 

  6. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  Google Scholar 

  7. Atkinson, M.R., Savageau, M.A., Myers, J.T. & Ninfa, A.J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli . Cell 113, 597–607 (2003).

    CAS  Google Scholar 

  8. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    CAS  Google Scholar 

  9. Kaern, M., Blake, W.J. & Collins, J.J. The engineering of gene regulatory networks. Annu. Rev. Biomed. Eng. 5, 179–206 (2003).

    CAS  PubMed  Google Scholar 

  10. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    CAS  PubMed  Google Scholar 

  11. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  12. Swain, P.S., Elowitz, M.B. & Siggia, E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12800 (2002).

    CAS  PubMed  Google Scholar 

  13. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    CAS  PubMed  Google Scholar 

  14. Pedraza, J.M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    CAS  PubMed  Google Scholar 

  15. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  16. Isaacs, F.J., Hasty, J., Cantor, C.R. & Collins, J.J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100, 7714–7719 (2003).

    CAS  PubMed  Google Scholar 

  17. Blake, W.J., Kaern, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    CAS  PubMed  Google Scholar 

  18. Raser, J.M. & O'Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao, C.V., Wolf, D.M. & Arkin, A.P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002).

    CAS  PubMed  Google Scholar 

  20. Cai, L., Friedman, N. & Xie, X.S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    CAS  PubMed  Google Scholar 

  21. Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M. & Elowitz, M.B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006).

    PubMed  Google Scholar 

  22. Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    CAS  Google Scholar 

  23. You, L., Cox, R.S., III, Weiss, R. & Arnold, F.H. Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).

    CAS  PubMed  Google Scholar 

  24. Anderson, J.C., Clarke, E.J., Arkin, A.P. & Voigt, C.A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    CAS  Google Scholar 

  25. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    CAS  PubMed  Google Scholar 

  26. Basu, S., Mehreja, R., Thiberge, S., Chen, M.T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl. Acad. Sci. USA 101, 6355–6360 (2004).

    CAS  Google Scholar 

  27. Chen, M.T. & Weiss, R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana . Nat. Biotechnol. 23, 1551–1555 (2005).

    CAS  PubMed  Google Scholar 

  28. Bulter, T. et al. Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA 101, 2299–2304 (2004).

    CAS  PubMed  Google Scholar 

  29. Levskaya, A. et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

    CAS  PubMed  Google Scholar 

  30. Derr, P., Boder, E. & Goulian, M. Changing the specificity of a bacterial chemoreceptor. J. Mol. Biol. 355, 923–932 (2006).

    CAS  PubMed  Google Scholar 

  31. Looger, L.L., Dwyer, M.A., Smith, J.J. & Hellinga, H.W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    CAS  PubMed  Google Scholar 

  32. Desmet, J., Demaeyer, M., Hazes, B. & Lasters, I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992).

    CAS  PubMed  Google Scholar 

  33. Park, S.H., Zarrinpar, A. & Lim, W.A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064 (2003).

    CAS  PubMed  Google Scholar 

  34. Bhattacharyya, R.P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006).

    CAS  PubMed  Google Scholar 

  35. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    CAS  PubMed  Google Scholar 

  36. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli . Science 292, 498–500 (2001).

    CAS  PubMed  Google Scholar 

  37. Chin, J.W., Cropp, T.A., Chu, S., Meggers, E. & Schultz, P.G. Progress toward an expanded eukaryotic genetic code. Chem. Biol. 10, 511–519 (2003).

    CAS  PubMed  Google Scholar 

  38. Kwok, Y. & Wong, J.T. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can. J. Biochem. 58, 213–218 (1980).

    CAS  PubMed  Google Scholar 

  39. Santoro, S.W., Wang, L., Herberich, B., King, D.S. & Schultz, P.G. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20, 1044–1048 (2002).

    CAS  PubMed  Google Scholar 

  40. Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli . Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).

    CAS  PubMed  Google Scholar 

  41. Cropp, T.A. & Schultz, P.G. An expanding genetic code. Trends Genet. 20, 625–630 (2004).

    CAS  PubMed  Google Scholar 

  42. Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res. 30, 4692–4699 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hino, N. et al. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat. Methods 2, 201–206 (2005).

    CAS  PubMed  Google Scholar 

  44. Anderson, J.C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566–7571 (2004).

    CAS  PubMed  Google Scholar 

  45. Mehl, R.A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    CAS  PubMed  Google Scholar 

  46. Bayer, T.S. & Smolke, C.D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    CAS  PubMed  Google Scholar 

  47. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    CAS  PubMed  Google Scholar 

  48. Rackham, O. & Chin, J.W. A network of orthogonal ribosome × mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

    CAS  Google Scholar 

  49. Rackham, O. & Chin, J.W. Cellular logic with orthogonal ribosomes. J. Am. Chem. Soc. 127, 17584–17585 (2005).

    CAS  PubMed  Google Scholar 

  50. Rackham, O., Wang, K. & Chin, J.W. Functional epitopes at the ribosome subunit interface. Nat. Chem. Biol. 2, 254–258 (2006).

    CAS  PubMed  Google Scholar 

  51. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).

    CAS  PubMed  Google Scholar 

  52. Cello, J., Paul, A.V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002).

    CAS  PubMed  Google Scholar 

  53. Smith, H.O., Hutchison, C.A., III, Pfannkoch, C. & Venter, J.C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 100, 15440–15445 (2003).

    CAS  PubMed  Google Scholar 

  54. Kodumal, S.J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. USA 101, 15573–15578 (2004).

    CAS  PubMed  Google Scholar 

  55. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    CAS  PubMed  Google Scholar 

  56. Binkowski, B.F., Richmond, K.E., Kaysen, J., Sussman, M.R. & Belshaw, P.J. Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Res. 33, e55 (2005).

    PubMed  PubMed Central  Google Scholar 

  57. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    CAS  Google Scholar 

  58. Yokobayashi, Y., Weiss, R. & Arnold, F.H. Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).

    CAS  Google Scholar 

  59. Farmer, W.R. & Liao, J.C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18, 533–537 (2000).

    CAS  PubMed  Google Scholar 

  60. Mukherjee, K.J., Rowe, D.C., Watkins, N.A. & Summers, D.K. Studies of single-chain antibody expression in quiescent Escherichia coli . Appl. Environ. Microbiol. 70, 3005–3012 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rowe, D.C. & Summers, D.K. The quiescent-cell expression system for protein synthesis in Escherichia coli . Appl. Environ. Microbiol. 65, 2710–2715 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Guido, N.J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    CAS  PubMed  Google Scholar 

  63. Szostak, J.W., Bartel, D.P. & Luisi, P.L. Synthesizing life. Nature 409, 387–390 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J.J. Collins, M.B. Elowitz, M. Kaern and R. Weiss for sharing figures, and T.A. Cropp, J.C. Anderson, P. Holliger and P. Lee for critical reading. J.W. Chin is an EMBO Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W Chin.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, J. Modular approaches to expanding the functions of living matter. Nat Chem Biol 2, 304–311 (2006). https://doi.org/10.1038/nchembio789

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing