Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro

An Erratum to this article was published on 01 April 2006

This article has been updated

Abstract

Inspired by the usefulness of small molecules to study membrane traffic, we used high-throughput synthesis and phenotypic screening to discover secramine, a molecule that inhibits membrane traffic out of the Golgi apparatus by an unknown mechanism. We report here that secramine inhibits activation of the Rho GTPase Cdc42, a protein involved in membrane traffic, by a mechanism dependent upon the guanine dissociation inhibitor RhoGDI. RhoGDI binds Cdc42 and antagonizes its membrane association, nucleotide exchange and effector binding. In vitro, secramine inhibits Cdc42 binding to membranes, GTP and effectors in a RhoGDI-dependent manner. In cells, secramine mimics the effects of dominant-negative Cdc42 expression on protein export from the Golgi and on Golgi polarization in migrating cells. RhoGDI-dependent Cdc42 inhibition by secramine illustrates a new way to inhibit Rho GTPases with small molecules and provides a new means to study Cdc42, RhoGDI and the cellular processes they mediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening of a library of galanthamine-like small molecules leading to the identification of secramine A as an inhibitor of Golgi-to–plasma membrane transport.
Figure 2: Secramine A inhibits PIP2 liposome–stimulated actin polymerization in X. laevis egg extract and acts upstream of Arp2/3 complex activation.
Figure 3: Secramine A inhibits Cdc42 activation in X. laevis egg extract.
Figure 4: Secramine A inhibits Cdc42 activation and PIP2 liposome association in vitro.
Figure 5: Secramine does not disrupt PIP2 liposomes.
Figure 6: Effect of secramine A on Cdc42-dependent events.

Similar content being viewed by others

Change history

  • 07 March 2006

    note made in HTML and Fig 3a; PDF appended; corrected online date added to PDF

Notes

  1. *Note: In the version of this article initially published online, two labels in Figure 3a are incorrect. The label in the square below the arrow for step 2 should read 'Cdc42 GTP' instead of 'Cdc42 GDP', and ‘PI’ in step 4 should be ‘Pi’. These errors have been corrected in the PDF version of the article.

References

  1. Klausner, R.D., Donaldson, J.G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Feng, Y. et al. Exo1: A new chemical inhibitor of the exocytic pathway. Proc. Natl. Acad. Sci. USA 100, 6469–6474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng, Y. et al. Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep. 5, 596–601 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, B., Wylie, F.G., Teasdale, R.D. & Stow, J.L. Polarized trafficking of E-cadherin is regulated by Rac1 and Cdc42 in Madin-Darby canine kidney cells. Am. J. Physiol. Cell Physiol. 288, C1411–C1419 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat. Cell Biol. 1, 8–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Camera, P. et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat. Cell Biol. 5, 1071–1078 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Bishop, A.L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Pelish, H.E., Westwood, N.J., Feng, Y., Kirchhausen, T. & Shair, M.D. Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. J. Am. Chem. Soc. 123, 6740–6741 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma, L., Cantley, L.C., Janmey, P.A. & Kirschner, M.W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ho, H.Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118, 203–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Cooper, J.A., Walker, S.B. & Pollard, T.D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J. Muscle Res. Cell Motil. 4, 253–262 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Olofsson, B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signaling. Cell. Signal. 11, 545–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Benard, V., Bohl, B.P. & Bokoch, G.M. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Papayannopoulos, V. et al. A polybasic motif allows N-WASP to act as a sensor of PIP2 density. Mol. Cell 17, 181–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, B., Zhang, Y., Wang, Z. & Zheng, Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J. Biol. Chem. 275, 25299–25307 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schacht, J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J. Lipid Res. 19, 1063–1067 (1978).

    CAS  PubMed  Google Scholar 

  21. Lin, H.C., Barylko, B., Achiriloaie, M. & Albanesi, J.P. Phosphatidylinositol (4,5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. J. Biol. Chem. 272, 25999–26004 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Jost, M., Simpson, F., Kavran, J.M., Lemmon, M.A. & Schmid, S.L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Erickson, J.W., Zhang, C., Kahn, R.A., Evans, T. & Cerione, R.A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Fucini, R.V., Chen, J., Sharma, C., Kessels, M.M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell 13, 621–631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, W.J., Erickson, J.W., Lin, R. & Cerione, R.A. The gamma-subunit of the coatomer complex binds to Cdc42 to mediate transformation. Nature 405, 800–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, J. et al. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J. Cell Biol. 169, 383–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman, G.R., Nassar, N. & Cerione, R.A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Mansour, S.J. et al. p200 Arf-GEP1: a Golgi-localized guanine nucleotide exchange protein whose Sec7 domain is targeted by the drug brefeldin A. Proc. Natl. Acad. Sci. USA 96, 7968–7973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keep, N.H. et al. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Structure 5, 623–633 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Nobes, C.D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. DerMardirossian, C., Schnelzer, A. & Bokoch, G.M. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol. Cell 15, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by Cdc42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vasudevan, A. et al. Potent, highly selective, and non-thiol inhibitors of protein geranylgeranyltransferase-I. J. Med. Chem. 42, 1333–1340 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, Y., Dickerson, J.B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl. Acad. Sci. USA 101, 7618–7623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cole, N.B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1–15 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossman, K.L. et al. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21, 1315–1326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peterson, J.R., Lokey, R.S., Mitchison, T.J. & Kirschner, M.W. A chemical inhibitor of N-WASP reveals a new mechanism of targeting protein interactions. Proc. Natl. Acad. Sci. USA 98, 10624–10629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gallusser, A. & Kirchhausen, T. The beta 1 and beta 2 subunits of the AP complexes are the clathrin coat assembly components. EMBO J. 12, 5237–5244 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.C. Harrison for comments on the manuscript. We also thank D.A. Annis, N. Nazef, G. Hoffman, R. Massol, A. Mata-Fink, and A. Griffin for technical assistance and discussions. This work was supported by US National Institutes of Health (NIH) grant GM62566-05 to T.K. and M.D.S. and NIH New England Regional Center of Excellence (NERCE) grant 5 U54 AI057159-03 to T.K. M.S. and J.C. were supported by NIH grant GM068674.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew D Shair or Tomas Kirchhausen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Screening results for galanthamine-like library. (PDF 1035 kb)

Supplementary Fig. 2

Effects of secramine on the secretory pathway. (PDF 3147 kb)

Supplementary Fig. 3

Inhibition of Rac1 activation by secramine. (PDF 153 kb)

Supplementary Video 1

BS-C-1 cells expressing VSVGts-EGFP at 40°C were treated with cycloheximide and 1% DMSO (vehicle) for 10 min followed by transfer to 32°C and image acquisition. (MOV 3067 kb)

Supplementary Video 2

BS-C-1 cells expressing VSVGts-EGFP at 40°C were treated with cycloheximide and 10 μM secramine A for 10 min followed by transfer to 32°C and image acquisition. (MOV 3071 kb)

Supplementary Video 3

This movie is a continuation of Supplementary Video 2; it was recorded at 32°C and at the conclusion of movie 2. (MOV 3074 kb)

Supplementary Methods (PDF 2092 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelish, H., Peterson, J., Salvarezza, S. et al. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat Chem Biol 2, 39–46 (2006). https://doi.org/10.1038/nchembio751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing