Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of a ligand-based antagonist of jasmonate perception

Abstract

(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) regulates developmental and stress responses in plants. Its perception involves the formation of a ternary complex with the F-box COI1 and a member of the JAZ family of co-repressors and leads to JAZ degradation. Coronatine (COR) is a bacterial phytotoxin that functionally mimics JA-Ile and interacts with the COI1-JAZ co-receptor with higher affinity than JA-Ile. On the basis of the co-receptor structure, we designed ligand derivatives that spatially impede the interaction of the co-receptor proteins and, therefore, should act as competitive antagonists. One derivative, coronatine-O-methyloxime (COR-MO), has strong activity in preventing the COI1-JAZ interaction, JAZ degradation and the effects of JA-Ile or COR on several JA-mediated responses in Arabidopsis thaliana. Moreover, it potentiates plant resistance, preventing the effect of bacterially produced COR during Pseudomonas syringae infections in different plant species. In addition to the utility of COR-MO for plant biology research, our results underscore its biotechnological potential for safer and sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of COR-MO on COR-dependent anthocyanin accumulation, root growth inhibition and COI1/JAZ9 interaction.
Figure 2: Effect of COR-MO on COR-mediated JAZ9 degradation and JA- and COR-dependent JAZ2 gene expression.
Figure 3: COR-MO does not affect auxin perception and signaling.
Figure 4: Effect of COR-MO on the infection by the necrotrophic pathogen B. cinerea and the bacterial hemibiotroph strains Pst DC3000 and DC3118 (COR−).

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Protein Data Bank

References

  1. Browse, J. & Howe, G.A. New weapons and a rapid response against insect attack. Plant Physiol. 146, 832–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chico, J.M., Chini, A., Fonseca, S. & Solano, R. JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11, 486–494 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Farmer, E.E., Almeras, E. & Krishnamurthy, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6, 372–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Fonseca, S. et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Wasternack, C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. (Lond.) 100, 681–697 (2007).

    Article  CAS  Google Scholar 

  6. Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. (Lond.) 111, 1021–1058 (2013).

    Article  CAS  Google Scholar 

  7. Fonseca, S. et al. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLoS ONE 9, e86182 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nakata, M. et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25, 1641–1656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pauwels, L. & Goossens, A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23, 3089–3100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sasaki-Sekimoto, Y. et al. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol. 163, 291–304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, S. et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9, e1003653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Thines, B. et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, Y. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pauwels, L. et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788–791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Browse, J. The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70, 1539–1546 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Staswick, P.E., Yuen, G.Y. & Lehman, C.C. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15, 747–754 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J. & Browse, J. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 7209–7214 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. & Turner, J.G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Yan, J. et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220–2236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA 105, 7100–7105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheard, L.B. et al. Jasmonate perception by inositol-phosphate–potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Saracco, S.A. et al. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. Plant J. 59, 344–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maor, R. et al. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol. Cell. Proteomics 6, 601–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, Z. et al. The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol. Plant 4, 279–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Fernández-Calvo, P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hu, Y., Jiang, L., Wang, F. & Yu, D. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907–2924 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niu, Y., Figueroa, P. & Browse, J. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J. Exp. Bot. 62, 2143–2154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi, T. et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23, 1795–1814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song, S. et al. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23, 1000–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bender, C.L., Alarcon-Chaidez, F. & Gross, D.C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uppalapati, S.R. et al. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 20, 955–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Y. et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J. 36, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Brooks, D.M. et al. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 17, 162–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S.Y. Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Fonseca, S., Chico, J.M. & Solano, R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12, 539–547 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi, K. et al. Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chem. Biol. 7, 590–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Staswick, P.E. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150, 1310–1321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katsir, L., Chung, H.S., Koo, A.J. & Howe, G.A. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11, 428–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chini, A., Boter, M. & Solano, R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid–signalling module. FEBS J. 276, 4682–4692 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Gimenez-Ibanez, S. & Solano, R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4, 72 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Robert-Seilaniantz, A., Grant, M. & Jones, J.D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49, 317–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Lamberth, C., Jeanmart, S., Luksch, T. & Plant, A. Current challenges and trends in the discovery of agrochemicals. Science 341, 742–746 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Marcos, J.F., Munoz, A., Perez-Paya, E., Misra, S. & Lopez-Garcia, B. Identification and rational design of novel antimicrobial peptides for plant protection. Annu. Rev. Phytopathol. 46, 273–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Enserink, M., Hines, P.J., Vignieri, S.N., Wigginton, N.S. & Yeston, J.S. Smarter pest control. The pesticide paradox. Introduction. Science 341, 728–729 (2013).

    Article  PubMed  Google Scholar 

  48. Xin, X.F. & He, S.Y. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51, 473–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Gimenez-Ibanez, S. et al. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLoS Biol. 12, e1001792 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Boyd, L.A., Ridout, C., O'Sullivan, D.M., Leach, J.E. & Leung, H. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Adie, B.A. et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19, 1665–1681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl. Acad. Sci. USA 105, 5632–5637 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okada, M. et al. Total syntheses of coronatines by exo-selective Diels-Alder reaction and their biological activities on stomatal opening. Org. Biomol. Chem. 7, 3065–3073 (2009).

    Article  CAS  Google Scholar 

  54. Nonaka, H., Ogawa, N., Maeda, N., Wang, Y.-G. & Kobayashi, Y. Stereoselective synthesis of epi-jasmonic acid, tuberonic acid, and 12-oxo-PDA. Org. Biomol. Chem. 8, 5212–5223 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Fonseca, S. & Solano, R. Pull-down analysis of interactions among jasmonic acid core signaling proteins. Methods Mol. Biol. 1011, 159–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Chini, A., Fonseca, S., Chico, J.M., Fernandez-Calvo, P. & Solano, R. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59, 77–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat Methodol. 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank K.-i. Hayashi (Okayama University) for important suggestions for the design of the antagonists. J. Browse (Washington State University) kindly provided the 35S:JAZ1-GUS seeds. M. Estelle (University of California–San Diego) kindly provided DR5:GUS and Dexp:TIR1-myc/tir1-1 seeds and the IAA7-GST clone. We obtained the fungal pathogen B. cinerea from E. Monte (Instituto Hispano-Luso de Investigaciones Agrarias (CIALE)). We also thank J. Paz-Ares (CNB-CSIC) and members of the lab for critical reading of the manuscript and suggestions. This work was financed by grants to R.S. (BIO2010-21739, CSD2007-00057 and EUI2008-03666) from the Spanish Ministerio de Ciencia e Innovación. I.M. was supported by a predoctoral fellowship from the Ministerio de Educación, Spain (grant AP2010-1410). A.C. and S.G.-I. were supported by postdoctoral fellowships from the Spanish Ministerio de Ciencia e Innovación ('Ramón y Cajal' 2010-05680 and 'Juan de la Cierva' JCI-2010-07532, respectively). M.B. was supported by a JAE-Doc fellowship (2010-01411) from CSIC.

Author information

Authors and Affiliations

Authors

Contributions

I.M., A.C. and R.S. designed the research. I.M., A.C., S.G.-I., G.G.-C. and M.B. performed experiments and wrote the corresponding methods. M.H. synthesized the derivatives and wrote the corresponding methods. A.P. obtained the NMR data. F.P. performed in silico analyses. I.M. and R.S. wrote the manuscript. All of the authors read and edited the manuscript.

Corresponding author

Correspondence to Roberto Solano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1–4. (PDF 5504 kb)

Supplementary Table 1

Genes upregulated and downregulated by COR-MO in the profiling of plants treated with COR versus COR-COR-MO (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monte, I., Hamberg, M., Chini, A. et al. Rational design of a ligand-based antagonist of jasmonate perception. Nat Chem Biol 10, 671–676 (2014). https://doi.org/10.1038/nchembio.1575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing