Research articles

Filter By:

  • Chirality is an intrinsic property in unsymmetric three-dimensional molecular assembly, contributing to the utility of the corresponding process and the resulting scaffolds. Now, on the sulfur(VI) hub, a three-step sequential ligand-exchange method has been established with precise stereocontrol, enabling the enantioselective synthesis of optically active S(VI) functional molecules.

    • Zhiyuan Peng
    • Shoujun Sun
    • Bing Gao
    Article
  • The use of biocatalysis to support early-stage drug discovery campaigns remains largely untapped. Here, engineered biocatalysts enable the synthesis of sp3-rich polycyclic compounds through an intramolecular cyclopropanation of benzothiophenes, affording a class of complex scaffolds potentially useful for fragment-based drug discovery campaigns.

    • David A. Vargas
    • Xinkun Ren
    • Rudi Fasan
    Article
  • Very few charge-neutral synthetic anion receptors can function in water, and those known typically select weakly hydrated anions such as iodide. Now a neutral molecular cage capable of donating 12 hydrogen bonds has been synthesized and found to bind highly hydrated sulfate in water with a strong selectivity over weakly hydrated anions.

    • Liuyang Jing
    • Evelyne Deplazes
    • Xin Wu
    Article
  • Achieving selectivity control in allylic arylations is a long-standing challenge in catalysis. Now a rhodium-catalysed system demonstrates chemo-, regio- and enantioselectivity, enabling Suzuki–Miyaura-type arylation with racemic, non-symmetrical, acyclic allylic systems; chelation is speculated to facilitate oxidative addition and enable both enantiomers of the starting material to converge onto a single product.

    • Violeta Stojalnikova
    • Stephen J. Webster
    • Stephen P. Fletcher
    ArticleOpen Access
  • Switching the magnetic state of a polycyclic conjugated hydrocarbon in a reversible and controlled manner is challenging. Now, by means of single-molecule scanning probe microscopy, an indenofluorene isomer on ultrathin NaCl films has been shown to adopt both open- and closed-shell states. Furthermore, bidirectional switching between the two states is achieved by changing the adsorption site of the molecule.

    • Shantanu Mishra
    • Manuel Vilas-Varela
    • Leo Gross
    ArticleOpen Access
  • The design of highly oxidizing Earth-abundant transition metal complexes for photochemical applications is desirable, but progress in this area remains limited. Now a manganese(IV) diguanidylpyridine complex has been shown to photooxidize naphthalene, benzene and acetonitrile to their radical cations after excitation with near-infrared light. Experimental and theoretical studies indicate the presence of two distinct ligand-to-metal charge transfer excited states.

    • Nathan R. East
    • Robert Naumann
    • Katja Heinze
    Article
  • Dual-pharmacophore DNA-encoded chemical libraries enable the identification of two synergistic binders for a biological target, but subsequent linking of this pair is required to obtain a full ligand, which can be challenging. Here we report a protein-templated selection of DNA-encoded dynamic library that can identify full ligands from fragment libraries without the need for subsequent fragment linking.

    • Yu Zhou
    • Wenyin Shen
    • Xiaoyu Li
    Article
  • The human ATP-hydrolysing enzyme p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Now, molecular motions at the active site in the temporal window immediately before and after ATP hydrolysis have been elucidated by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations.

    • Mikhail Shein
    • Manuel Hitzenberger
    • Anne K. Schütz
    ArticleOpen Access
  • Although hydrogen gas could serve as a promising future fuel, its high-capacity storage is a challenge. Now, a nanoporous magnesium borohydride framework is shown to store hydrogen as densely packed penta-dihydrogen clusters having well-defined orientations and directional interactions with the framework.

    • Hyunchul Oh
    • Nikolay Tumanov
    • Yaroslav Filinchuk
    ArticleOpen Access
  • Chromophore supramolecular assemblies have long been studied for their exotic photophysical properties arising from their local geometry and long-range sensitive excitonic couplings. Now a high-resolution structure of a model nanotubular system has revealed a uniform brick-layer molecular arrangement and a non-biological supramolecular motif—interlocking sulfonates—enabling clear understanding of supramolecular structure–excitonic property relationships.

    • Arundhati P. Deshmukh
    • Weili Zheng
    • Justin R. Caram
    Article
  • Cells spatially organize biochemical reactions within membrane-bound and membraneless compartments. The extent to which intrinsically disordered proteins themselves can form discrete compartments or condensed phases is poorly understood. Now a pair of model IDRs that display orthogonality in condensation and the chain features governing selective assembly have been identified.

    • Rachel M. Welles
    • Kandarp A. Sojitra
    • Matthew C. Good
    Article
  • Light-induced ultrafast switching between the molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Two competing pathways have now been identified by which electronically excited quadricyclane molecules relax to the electronic ground state, facilitating interconversion between the two isomers on different timescales.

    • Kurtis D. Borne
    • Joseph C. Cooper
    • Daniel Rolles
    ArticleOpen Access
  • Complexes of iron in high oxidation states play a pivotal role as active intermediates in numerous catalytic processes. Now, using a multimethod approach on a single molecular system, it has been shown that a stable high-valent Fe(VI) nitride can be converted to a reactive, superoxidized, heptavalent Fe(VII) nitride.

    • Martin Keilwerth
    • Weiqing Mao
    • Karsten Meyer
    ArticleOpen Access
  • While saturated N-heterocycles are widespread motifs in drug discovery, the seven-membered ring azepane is highly underrepresented. Now nitroarenes have been validated as competent substrates for azepane synthesis through conversion into singlet nitrenes for ring enlargement via N insertion and hydrogenolysis. This enables a highly versatile access towards polysubstituted azepanes in just two steps.

    • Rory Mykura
    • Raquel Sánchez-Bento
    • Daniele Leonori
    Article
  • Single-atom alloys have emerged as highly active and selective catalysts that do not follow the traditional models of heterogeneous catalysis. Now it has been shown that the binding of adsorbates at their surface abides by a simple 10-electron count rule, which can identify promising catalysts for various applications.

    • Julia Schumann
    • Michail Stamatakis
    • Romain Réocreux
    ArticleOpen Access
  • Metal-mediated self-assembly of organic building blocks is a powerful strategy to generate complex supramolecular objects. The non-statistical combination of multiple different components, however, has been a major challenge. Now integrative self-sorting of low-symmetry multicomponent cages has been achieved by combining shape complementarity and selective backbone interactions under thermodynamic control.

    • Kai Wu
    • Elie Benchimol
    • Guido H. Clever
    Article
  • The stereochemical control and bifunctional manipulation of chiral sulfur functional groups is a long-standing challenge. Now, an enantiopure bench-stable S(VI) fluoride exchange reagent enables the asymmetric synthesis of sulfoximines, sulfonimidamides and sulfonimidoyl fluorides. The bifunctional nature of this reagent provides a practical method for the introduction of S(VI) functionality.

    • Shun Teng
    • Zachary P. Shultz
    • Justin M. Lopchuk
    Article
  • Skeletal editing enables diversification of compounds not possible by applying peripheral editing strategies. Now, a catalyst-free atom-pair swap strategy for pyridine editing has been developed via one-pot sequential dearomatization, cycloaddition and rearomative retrocyclization. Benzenes and naphthalenes with precisely installed functional groups are produced, and the mild conditions enable late-stage skeletal diversification of pyridine cores.

    • Qiang Cheng
    • Debkanta Bhattacharya
    • Armido Studer
    ArticleOpen Access
  • The lack of effective methods for mirror-image (d-) protein sequencing hampers the development of mirror-image biology systems and related applications. Now, total chemical synthesis of mirror-image trypsin enables the sequencing of long d-peptides and d-proteins, which may facilitate applications of d-peptides and d-proteins as potential therapeutic and informational tools.

    • Guanwei Zhang
    • Ting F. Zhu
    Article
  • Photon-driven dinitrogen reduction to ammonia is a promising but challenging reaction. Now it has been shown that lithium hydride undergoes photolysis upon ultraviolet illumination to yield long-lived photon-generated electrons residing in hydrogen vacancies, favouring the activation of the N≡N bond and achieving photocatalytic ammonia synthesis.

    • Yeqin Guan
    • Hong Wen
    • Ping Chen
    Article