Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intermediate tunnelling–hopping regime in DNA charge transport

A Corrigendum to this article was published on 21 February 2017

This article has been updated

Abstract

Charge transport in molecular systems, including DNA, is involved in many basic chemical and biological processes, and its understanding is critical if they are to be used in electronic devices. This important phenomenon is often described as either coherent tunnelling over a short distance or incoherent hopping over a long distance. Here, we show evidence of an intermediate regime where coherent and incoherent processes coexist in double-stranded DNA. We measure charge transport in single DNA molecules bridged to two electrodes as a function of DNA sequence and length. In general, the resistance of DNA increases linearly with length, as expected for incoherent hopping. However, for DNA sequences with stacked guanine–cytosine (GC) base pairs, a periodic oscillation is superimposed on the linear length dependence, indicating partial coherent transport. This result is supported by the finding of strong delocalization of the highest occupied molecular orbitals of GC by theoretical simulation and by modelling based on the Büttiker theory of partial coherent charge transport.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct measurement of charge transport in dsDNA attached to two electrodes.
Figure 2: Resistance and structure of alternating (A(CG)nT) and stacked (ACnGnT) G DNA sequences.
Figure 3: Hopping transport in alternating G DNA sequences.
Figure 4: Intermediate tunnelling–hopping charge transport in stacked DNA sequences.

Change history

  • 17 January 2017

    In the version of this Article originally published, in ref. 19, in the author list, the second, third and fourth authors were not included and the reference should have read: 'Grib, N. V., Ryndyk, D. A., Gutiérrez, R. & Cuniberti, G. Distance-dependent coherent charge transport in DNA: crossover from tunneling to free propagation. J. Biophys. Chem. 1, 77–85 (2010).' This has now been corrected in the online versions of this Article.

References

  1. Wallace, S. S. Biological consequences of free radical-damaged DNA bases. Free Radic. Bio. Med. 33, 1–14 (2002).

    CAS  Google Scholar 

  2. Kawanishi, S., Hiraku, Y. & Oikawa, S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat. Res. Rev. Mutat. 488, 65–76 (2001).

    CAS  Google Scholar 

  3. Murphy, C. J. et al. Long-range photoinduced electron-transfer through a DNA helix. Science 262, 1025–1029 (1993).

    CAS  PubMed  Google Scholar 

  4. Giese, B. Long-distance charge transport in DNA: the hopping mechanism. Acc. Chem. Res. 33, 631–636 (2000).

    CAS  PubMed  Google Scholar 

  5. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis, F. D. et al. Distance-dependent electron transfer in DNA hairpins. Science 277, 673–676 (1997).

    CAS  PubMed  Google Scholar 

  7. Kelley, S. O., Jackson, N. M., Hill, M. G. & Barton, J. K. Long-range electron transfer through DNA films. Angew. Chem. Int. Ed. 38, 941–945 (1999).

    CAS  Google Scholar 

  8. Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000).

    CAS  PubMed  Google Scholar 

  9. Fink, H.-W. & Schonenberger, C. Electrical conduction through DNA molecules. Nature 398, 407–410 (1999).

    CAS  PubMed  Google Scholar 

  10. Xu, B. Q. et al. Direct conductance measurement of single DNA molecules in aqueous solution. Nano. Lett. 4, 1105–1108 (2004).

    CAS  Google Scholar 

  11. Kawai, K. & Majima, T. Hole transfer kinetics of DNA. Acc. Chem. Res. 46, 2616–2625 (2013).

    CAS  PubMed  Google Scholar 

  12. Giese, B., Amaudrut, J., Kohler, A-K., Spormann, M. & Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    CAS  PubMed  Google Scholar 

  13. Zalinge, H., Schiffrin, D. J., Bates, A. D., Straikov, E. B., Wenzel, W. & Nichols, R. J. Variable-temperature measurements of the single-molecule conductance of double-stranded DNA. Angew. Chem. Int. Ed. 45, 5499–5502 (2006).

    Google Scholar 

  14. de Pablo, P. J. et al. Absence of dc-conductivity in λ-DNA. Phys. Rev. Lett. 85, 4992–4995 (2000).

    CAS  PubMed  Google Scholar 

  15. Risser, S. M., Beratan, D. N. & Meade, T. J. Electron transfer in DNA: predictions of exponential growth and decay of coupling with donor–acceptor distance. J. Am. Chem. Soc. 115, 2508–2510 (1993).

    CAS  Google Scholar 

  16. Jortner, J., Bixon, M., Langenbacher, T. & Michel-Beyerle, M. E. Charge transfer and transport in DNA. Proc. Natl Acad. Sci. USA 95, 12759–12765 (1998).

    CAS  PubMed  Google Scholar 

  17. Conwell, E. M. Charge transport in DNA in solution: the role of polarons. Proc. Natl Acad. Sci. USA 102, 8795–8799 (2005).

    CAS  PubMed  Google Scholar 

  18. Renaud, N., Berlin, Y. A., Lewis, F. D. & Ratner, M. A. Between superexchange and hopping: an intermediate charge-transfer mechanism in poly(A)-poly(T) DNA hairpins. J. Am. Chem. Soc. 135, 3953–3963 (2013).

    CAS  PubMed  Google Scholar 

  19. Grib, N. V., Ryndyk, D. A., Gutiérrez, R. & Cuniberti, G. Distance-dependent coherent charge transport in DNA: crossover from tunneling to free propagation. J. Biophys. Chem. 1, 77–85 (2010).

    CAS  Google Scholar 

  20. Zhang, Y., Liu, C., Balaeff, A., Skourtis, S. S. & Beratan, D. N. A flickering resonance mechanism for biological charge transfer. Proc. Natl Acad. Sci. USA 111, 10049–10054 (2014).

    CAS  PubMed  Google Scholar 

  21. Genereux, J. C. & Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 110, 1642–1662 (2009).

    Google Scholar 

  22. Voityuk, A. A., Rösch, N., Bixon, M. & Jortner, J. Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B 104, 9740–9745 (2000).

    CAS  Google Scholar 

  23. Šponer, J., Leszczyński, J. & Hobza, P. Nature of nucleic acid–base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J. Phys. Chem. 100, 5590–5596 (1996).

    Google Scholar 

  24. Smit, R. H. M., Untiedt, C., Rubio-Bollinger, G., Segers, R. C. & van Ruitenbeek, J. M. Observation of a parity oscillation in the conductance of atomic wires. Phys. Rev. Lett. 91, 076805 (2003).

    CAS  PubMed  Google Scholar 

  25. Tada, T., Nozaki, D., Kondo, M., Hamayama, S. & Yoshizawa, K. Oscillation of conductance in molecular junctions of carbon ladder compounds. J. Am. Chem. Soc. 126, 14182–14189 (2004).

    CAS  PubMed  Google Scholar 

  26. Büttiker, M. Coherent and sequential tunneling in series barriers. IBM J. Res. Dev. 32, 63–75 (1988).

    Google Scholar 

  27. Hush, N. S. & Cheung, A. S. Ionization potentials and donor properties of nucleic acid bases and related compounds. Chem. Phys. Lett. 34, 11–13 (1975).

    CAS  Google Scholar 

  28. Di Felice, R., Calzolari, A., Molinari, E. & Garbesi, A. Ab initio study of model guanine assemblies: the role of coupling and band transport. Phys. Rev. B 65, 045104 (2001).

    Google Scholar 

  29. Saito, I. et al. Photoinduced DNA cleavage via electron transfer: demonstration that guanine residues located 5′ to guanine are the most electron-donating sites. J. Am. Chem. Soc. 117, 6406–6407 (1995).

    CAS  Google Scholar 

  30. Berlin, Y. A., Burin, A. L. & Ratner, M. A. Charge hopping in DNA. J. Am. Chem. Soc. 123, 260–268 (2000).

    Google Scholar 

  31. Liu, T. & Barton, J. K. DNA electrochemistry through the base pairs not the sugar–phosphate backbone. J. Am. Chem. Soc. 127, 10160–10161 (2005).

    CAS  PubMed  Google Scholar 

  32. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano. Lett. 6, 458–462 (2006).

    CAS  PubMed  Google Scholar 

  33. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Google Scholar 

  34. Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    CAS  PubMed  Google Scholar 

  35. McCreery, R. Molecular electronic junctions. Chem. Mater. 16, 4477–4496 (2004).

    CAS  Google Scholar 

  36. Luo, L., Choi, S. H. & Frisbie, C. D. Probing hopping conduction in conjugated molecular wires connected to metal electrodes. Chem. Mater. 23, 631–645 (2011).

    CAS  Google Scholar 

  37. Segal, D., Nitzan, A., Ratner, M. & Davis, W. B. Activated conduction in microscopic molecular junctions. J. Phys. Chem. B 104, 2790–2793 (2000).

    CAS  Google Scholar 

  38. Nitzan, A. The relationship between electron transfer rate and molecular conduction 2. The sequential hopping case. Isr. J. Chem. 42, 163–166 (2002).

    CAS  Google Scholar 

  39. O'Neil, M. A. & Barton, J. K. DNA charge transport: conformationally gated hopping through stacked domains. J. Am. Chem. Soc. 126, 11471–11483 (2004).

    Google Scholar 

  40. Venkatramani, R. et al. Evidence for a near-resonant charge transfer mechanism for double-stranded peptide nucleic acid. J. Am. Chem. Soc. 133, 62–72 (2010).

    PubMed  Google Scholar 

  41. Yu, Z. G. & Song, X. Variable range hopping and electrical conductivity along the DNA double helix. Phys. Rev. Lett. 86, 6018–6021 (2001).

    CAS  PubMed  Google Scholar 

  42. Renger, T. & Marcus, R. A. Variable-range hopping electron transfer through disordered bridge states: application to DNA. J. Phys. Chem. A 107, 8404–8419 (2003).

    CAS  Google Scholar 

  43. Bende, A., Bogár, F. & Ladik, J. Hole mobilities of periodic models of DNA double helices in the nucleosomes at different temperatures. Chem. Phys. Lett. 565, 128–131 (2013).

    CAS  Google Scholar 

  44. Lewis, F. D., Zhu, H., Daublain, P., Cohen, B. & Wasielewski, M. R. Hole mobility in DNA A tracts. Angew. Chem. Int. Ed. 45, 7982–7985 (2006).

    CAS  Google Scholar 

  45. Jortner, J., Bixon, M., Voityuk, A. A. & Rösch, N. Superexchange mediated charge hopping in DNA. J. Phys. Chem. A 106, 7599–7606 (2002).

    CAS  Google Scholar 

  46. Chen, W. et al. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133, 17160–17163 (2011).

    CAS  Google Scholar 

  47. Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

    CAS  PubMed  Google Scholar 

  48. Berlin, Y. A., Voityuk, A. A. & Ratner, M. A. DNA base pair stacks with high electric conductance: a systematic structural search. ACS Nano 6, 8216–8225 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Jiang and H. Yan for help with PAGE gel experiments, and D.N. Beratan, N. Seeman, F.D. Lewis, Y. Berlin, A. Balaeff and M.R. Wasielewski for discussions. The authors also acknowledge financial support from the Office of Naval Research (N00014-11-1-0729).

Author information

Authors and Affiliations

Authors

Contributions

L.X. and C.B. performed the conductance measurement experiments. J.L.P. performed INDO calculations. M.A.R. and V.M. supervised the INDO calculations. N.T. proposed the Büttiker model analysis and supervised the experiments.

Corresponding author

Correspondence to Nongjian Tao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Palma, J., Bruot, C. et al. Intermediate tunnelling–hopping regime in DNA charge transport. Nature Chem 7, 221–226 (2015). https://doi.org/10.1038/nchem.2183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing