Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic

Abstract

In a genome-wide RNA-mediated interference screen for genes required in membrane traffic — including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion — we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of positives within functional groups, and phenotypic profiling of yolk receptor (RME-2–GFP) localization.
Figure 2: Anterior PAR-complex components are required for efficient endocytosis.
Figure 3: Coelomocyte endocytosis and recycling endosome morphology are disrupted by loss of anterior PAR-complex components.
Figure 4: Altered trafficking of MHCI and transferrin in HeLa cells expressing dominant-negative Par6 or Cdc42, and association of HA–CDC-42 with recycling endosomes.

Similar content being viewed by others

References

  1. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999).

    Article  CAS  Google Scholar 

  2. Grant, B. et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biol. 3, 573–579 (2001).

    Article  CAS  Google Scholar 

  3. Sato, M. et al. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biol. 7, 559–569 (2005).

    Article  CAS  Google Scholar 

  4. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  Google Scholar 

  5. Oegema, K. & Hyman, A. A. Cell division. WormBook (ed.) The C. elegans Research Community, WormBook. doi/10.1895/wormbook.1.72.1, http://www.wormbook.org (2006).

    Google Scholar 

  6. Nance, J. PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 27, 126–135 (2005).

    Article  CAS  Google Scholar 

  7. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  Google Scholar 

  8. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    Article  CAS  Google Scholar 

  9. Cau, J. & Hall, A. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118, 2579–2587 (2005).

    Article  CAS  Google Scholar 

  10. Nishimura, T. et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biol. 7, 270–277 (2005).

    Article  CAS  Google Scholar 

  11. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  12. Parsons, M. et al. Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Mol. Cell. Biol. 25, 1680–1695 (2005).

    Article  CAS  Google Scholar 

  13. Adamo, J. E. et al. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J. Cell Biol. 155, 581–592 (2001).

    Article  CAS  Google Scholar 

  14. Totong, R., Achilleos, A. & Nance, J. PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development 134, 1259–1268 (2007).

    Article  CAS  Google Scholar 

  15. Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dang, H., Li, Z., Skolnik, E. Y. & Fares, H. Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol. Biol. Cell 15, 189–196 (2004).

    Article  CAS  Google Scholar 

  17. Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T. & Donaldson, J. G. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154, 1007–1017 (2001).

    Article  CAS  Google Scholar 

  18. Weigert, R. & Donaldson, J. G. Fluorescent microscopy-based assays to study the role of Rab22a in clathrin-independent endocytosis. Methods Enzymol. 403, 243–253 (2005).

    Article  CAS  Google Scholar 

  19. Radhakrishna, H. & Donaldson, J. G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol. 139, 49–61 (1997).

    Article  CAS  Google Scholar 

  20. Weigert, R., Yeung, A. C., Li, J. & Donaldson, J. G. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol. Biol. Cell 15, 3758–3770 (2004).

    Article  CAS  Google Scholar 

  21. Caplan, S. et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 21, 2557–2567 (2002).

    Article  CAS  Google Scholar 

  22. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  23. Kubler, E. & Riezman, H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855–2862 (1993).

    Article  CAS  Google Scholar 

  24. Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11, 33–46 (2006).

    Article  CAS  Google Scholar 

  25. Braun, A. et al. EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol. Biol. Cell 16, 3642–3658 (2005).

    Article  CAS  Google Scholar 

  26. Kessels, M. M. & Qualmann, B. Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J. 21, 6083–6094 (2002).

    Article  CAS  Google Scholar 

  27. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  Google Scholar 

  28. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    Article  CAS  Google Scholar 

  29. Cowan, C. R. & Hyman, A. A. Acto-myosin reorganization and PAR polarity in C. elegans. Development 134, 1035–1043 (2007).

    Article  CAS  Google Scholar 

  30. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  31. Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001).

    Article  CAS  Google Scholar 

  32. Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol. 7, 262–269 (2005).

    Article  CAS  Google Scholar 

  33. Lu, H. & Bilder, D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nature Cell Biol. 7, 1132–1139 (2005).

    Article  CAS  Google Scholar 

  34. Emery, G. et al. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 122, 763–773 (2005).

    Article  CAS  Google Scholar 

  35. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. McGraw, J. Donaldson and I. Macara for important reagents; we also thank J. Donaldson and R. Weigert for their generous advice with the HeLa trafficking assays. We thank P. Schweinsberg, H. Dang and L. Shieh for technical assistance. This work was supported by NIH Grants GM67237 to B.D.G and GM65235 to H.F.

Author information

Authors and Affiliations

Authors

Contributions

Z.B. participated in the experimental design, performed both screens, and performed and analysed endosome morphology and endocytic trafficking in worms and mammalian cells, and also wrote the paper. S.P. contributed to the secondary screen and quantification analysis. H.F. generated the transgenic C. elegans lines expressing coelomocyte endosome markers. B.D.G. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Barth D. Grant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 1803 kb)

Supplementary Information

Supplementary Methods (PDF 197 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1326 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1725 kb)

Supplementary Information

Supplementary Table 1 (XLS 245 kb)

Supplementary Information

Supplementary Table 2 (PDF 229 kb)

Supplementary Information

Supplementary Table 3 (XLS 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balklava, Z., Pant, S., Fares, H. et al. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 9, 1066–1073 (2007). https://doi.org/10.1038/ncb1627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing