Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation

Abstract

The kinase IKK1 (also known as IKKα) was previously reported to regulate epidermal development and skeletal morphogenesis by acting in keratinocytes to induce their differentiation in an NF-κB independent manner1,2,3,4,5. Here, we show that mice with epidermal keratinocyte-specific IKK1 ablation (hereafter referred to as IKK1EKO) develop a normally differentiated stratified epidermis, demonstrating that the function of IKK1 in inducing epidermal differentiation is not keratinocyte-autonomous. Despite normal epidermal stratification, the IKK1EKO mice display impaired epidermal-barrier function and increased transepidermal water loss, due to defects in stratum corneum lipid composition and in epidermal tight junctions. These defects are caused by the deregulation of retinoic acid target genes, encoding key lipid modifying enzymes and tight junction proteins, in the IKK1-deficient epidermis. Furthermore, we show that IKK1-deficient cells display impaired retinoic acid-induced gene transcription, and that IKK1 is recruited to the promoters of retinoic acid-regulated genes, suggesting that one mechanism by which IKK1 controls epidermal-barrier formation is by regulating the expression of retinoic acid receptor target genes in keratinocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal epidermal differentiation in mice with keratinocyte-specific knockout of Ikk1.
Figure 2: IKK1 is essential for epidermal barrier formation.
Figure 3: IKK1 is essential for normal epidermal lipid metabolism.
Figure 4: Loss of IKK1 in the epidermis leads to increased vascularisation.
Figure 5: Impaired retinoic acid-induced transcriptional activity in the absence of IKK1.

Similar content being viewed by others

References

  1. Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284, 316–320 (1999).

    Article  CAS  Google Scholar 

  2. Li, Q. et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13, 1322–1328 (1999).

    Article  CAS  Google Scholar 

  3. Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKα. Science 284, 313–316 (1999).

    Article  CAS  Google Scholar 

  4. Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature 410, 710–714 (2001).

    Article  CAS  Google Scholar 

  5. Sil, A. K., Maeda, S., Sano, Y., Roop, D. R. & Karin, M. IαB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428, 660–664 (2004).

    Article  CAS  Google Scholar 

  6. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  Google Scholar 

  7. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  Google Scholar 

  8. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  Google Scholar 

  9. Fisher, C. IKKα−/− mice share phenotype with pupoid fetus (pf/pf) and repeated epilation (Er/Er) mutant mice. Trends Genet. 16, 482–484 (2000).

    Article  CAS  Google Scholar 

  10. Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).

    Article  CAS  Google Scholar 

  11. Elias, P. M. et al. Desmoglein isoform distribution affects stratum corneum structure and function. J. Cell Biol. 153, 243–249 (2001).

    Article  CAS  Google Scholar 

  12. Madison, K. C. Barrier function of the skin: “la raison d'etre” of the epidermis. J. Invest. Dermatol. 121, 231–241 (2003).

    Article  CAS  Google Scholar 

  13. Zettersten, E. et al. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J. Invest. Dermatol. 111, 784–790 (1998).

    Article  CAS  Google Scholar 

  14. Gurrieri, S. et al. Differentiation-dependent regulation of secreted phospholipases A2 in murine epidermis. J. Invest. Dermatol. 121, 156–164 (2003).

    Article  CAS  Google Scholar 

  15. Bouwstra, J. A., Honeywell-Nguyen, P. L., Gooris, G. S. & Ponec, M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 42, 1–36 (2003).

    Article  CAS  Google Scholar 

  16. Bouwstra, J. A., Gooris, G. S., Dubbelaar, F. E., Weerheim, A. M. & Ponec, M. pH, cholesterol sulfate, and fatty acids affect the stratum corneum lipid organization. J. Investig. Dermatol. Symp. Proc. 3, 69–74 (1998).

    Article  CAS  Google Scholar 

  17. Macheleidt, O., Kaiser, H. W. & Sandhoff, K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 119, 166–173 (2002).

    Article  CAS  Google Scholar 

  18. Larcher, F., Murillas, R., Bolontrade, M., Conti, C. J. & Jorcano, J. L. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17, 303–311 (1998).

    Article  CAS  Google Scholar 

  19. Li, Q., Lu, Q., Estepa, G. & Verma, I. M. Identification of 14-3-3sigma mutation causing cutaneous abnormality in repeated-epilation mutant mouse. Proc. Natl Acad. Sci. USA 102, 15977–15982 (2005).

    Article  CAS  Google Scholar 

  20. Calleja, C. et al. Genetic and pharmacological evidence that a retinoic acid cannot be the RXR-activating ligand in mouse epidermis keratinocytes. Genes Dev. 20, 1525–1538 (2006).

    Article  CAS  Google Scholar 

  21. Attar, P. S. et al. Inhibition of retinoid signaling in transgenic mice alters lipid processing and disrupts epidermal barrier function. Mol. Endocrinol. 11, 792–800 (1997).

    Article  CAS  Google Scholar 

  22. Imakado, S. et al. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev. 9, 317–329 (1995).

    Article  CAS  Google Scholar 

  23. Hughes, P. J. et al. Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1α,25-dihydroxyvitamin D3. Biochem. J. 355, 361–371 (2001).

    Article  CAS  Google Scholar 

  24. Antonio, V., Janvier, B., Brouillet, A., Andreani, M. & Raymondjean, M. Oxysterol and 9-cis-retinoic acid stimulate the group IIA secretory phospholipase A2 gene in rat smooth-muscle cells. Biochem. J. 376, 351–360 (2003).

    Article  CAS  Google Scholar 

  25. Kubota, H. et al. Retinoid X receptor α and retinoic acid receptor γ mediate expression of genes encoding tight-junction proteins and barrier function in F9 cells during visceral endodermal differentiation. Exp. Cell Res. 263, 163–172 (2001).

    Article  CAS  Google Scholar 

  26. Humphries, J. D., Parry, E. J., Watson, R. E., Garrod, D. R. & Griffiths, C. E. All-trans retinoic acid compromises desmosome expression in human epidermis. Br. J. Dermatol. 139, 577–584 (1998).

    Article  CAS  Google Scholar 

  27. Weninger, W., Rendl, M., Mildner, M. & Tschachler, E. Retinoids downregulate vascular endothelial growth factor/vascular permeability factor production by normal human keratinocytes. J. Invest. Dermatol. 111, 907–911 (1998).

    Article  CAS  Google Scholar 

  28. Fisher, G. J. & Voorhees, J. J. Molecular mechanisms of retinoid actions in skin. Faseb J. 10, 1002–1013 (1996).

    Article  CAS  Google Scholar 

  29. Giguere, V., Lyn, S., Yip, P., Siu, C. H. & Amin, S. Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl Acad. Sci USA 87, 6233–6237 (1990).

    Article  CAS  Google Scholar 

  30. Nagpal, S. et al. Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J. Invest. Dermatol. 106, 269–274 (1996).

    Article  CAS  Google Scholar 

  31. Park, K. J., Krishnan, V., O'Malley, B. W., Yamamoto, Y. & Gaynor, R. B. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell 18, 71–82 (2005).

    Article  CAS  Google Scholar 

  32. Hoberg, J. E., Yeung, F. & Mayo, M. W. SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol. Cell 16, 245–255 (2004).

    Article  CAS  Google Scholar 

  33. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  Google Scholar 

  34. Nenci, A. et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 15, 531–542 (2006).

    Article  CAS  Google Scholar 

  35. Reichelt, J., Breiden, B., Sandhoff, K. & Magin, T. M. Loss of keratin 10 is accompanied by increased sebocyte proliferation and differentiation. Eur. J. Cell Biol. 83, 747–759 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. X. Neto for the retinoic acid reporter constructs, A. Aranda for the GST–CSMRT vector, and T. Krieg and C. Niessen for critical reading of the manuscript. The genomics core facility of the European Molecular Biology Laboratory (EMBL) assisted with the microarray experiments and data submission. This work was supported by the University of Cologne and by EMBL and by EU FP6 grant MUGEN (LSHG-CT-2005-005203) to M. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manolis Pasparakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gareus, R., Huth, M., Breiden, B. et al. Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat Cell Biol 9, 461–469 (2007). https://doi.org/10.1038/ncb1560

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1560

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing