Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino

Abstract

The actin-nucleation factors Spire and Cappuccino (Capu) regulate the onset of ooplasmic streaming in Drosophila melanogaster1,2,3,4,5. Although this streaming event is microtubule-based, actin assembly is required for its timing. It is not understood how the interaction of microtubules and microfilaments is mediated in this context. Here, we demonstrate that Capu and Spire have microtubule and microfilament crosslinking activity. The spire locus encodes several distinct protein isoforms (SpireA, SpireC and SpireD). SpireD was recently shown to nucleate actin, but the activity of the other isoforms has not been addressed. We find that SpireD does not have crosslinking activity, whereas SpireC is a potent crosslinker. We show that SpireD binds to Capu and inhibits F-actin/microtubule crosslinking, and activated Rho1 abolishes this inhibition, establishing a mechanistic basis for the regulation of Capu and Spire activity. We propose that Rho1, cappuccino and spire are elements of a conserved developmental cassette that is capable of directly mediating crosstalk between microtubules and microfilaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rho1-capu, reduced Rho1, and capu-spire oocytes undergo premature ooplasmic streaming.
Figure 2: Rho1, Capu and Spire expression is enriched at the oocyte cortex, where stable microtubules are also localized.
Figure 3: Protein–protein interactions between Rho1, Capu and Spire indicate a complex regulatory network.
Figure 4: Capu and Spire affect actin dynamics.
Figure 5: Rho1 regulates crosslinking of F-actin and microtubules by Capu and Spire.

Similar content being viewed by others

References

  1. Theurkauf, W. E. Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 265, 2093–2096 (1994).

    Article  CAS  Google Scholar 

  2. Manseau, L. & Schüpbach, T. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3, 1437–1452 (1989).

    Article  CAS  Google Scholar 

  3. Emmons, S. et al. cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev. 9, 2482–2494 (1995).

    Article  CAS  Google Scholar 

  4. Wellington, A. et al. Spire contains actin binding domains and is related to ascidian posterior end mark-5. Development 126, 5267–5274 (1999).

    CAS  Google Scholar 

  5. Cooley, L. & Theurkauf, W. E. Cytoskeletal functions during Drosophila oogenesis. Science 266, 590–596 (1994).

    Article  CAS  Google Scholar 

  6. Palacios, I. M. & St Johnston, D. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 129, 5473–5485 (2002).

    Article  CAS  Google Scholar 

  7. Serbus, L., Cha, B., Theurkauf, W. & Saxton, W. Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development 132, 3743–3752 (2005).

    Article  CAS  Google Scholar 

  8. Manseau, L., Calley, J. & Phan, H. Profilin is required for posterior patterning of the Drosophila oocyte. Development 122, 2109–2116 (1996).

    CAS  Google Scholar 

  9. Magie, C. R., Meyer, M. R., Gorsuch, M. S. & Parkhurst, S. M. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development 126, 5353–5364 (1999).

    CAS  Google Scholar 

  10. Aktories, K., Wilde, C. & Vogelsgesang, M. Rho-modifying C3-like ADP-ribosyl-transferases. Rev. Physiol. Biochem. Pharmacol. 152, 1–22 (2004).

    CAS  Google Scholar 

  11. Quinlan, M., Heuser, J., Kerkhoff, E. & Mullins, R. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).

    Article  CAS  Google Scholar 

  12. Brand, A. H., Manoukian, A. S. & Perrimon, N. Ectopic expression in Drosophila. Methods Cell Biol. 44, 635–654 (1994).

    Article  CAS  Google Scholar 

  13. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004).

    Article  CAS  Google Scholar 

  14. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    Article  CAS  Google Scholar 

  15. Wittmann, T. & Waterman-Storer, C. M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001).

    CAS  PubMed  Google Scholar 

  16. Wallar, B. J. & Alberts, A. S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol. 13, 435–446 (2003).

    Article  CAS  Google Scholar 

  17. Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci. 116, 2603–2611 (2003).

    Article  CAS  Google Scholar 

  18. Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105 (2004).

    Article  CAS  Google Scholar 

  19. Magie, C. R., Pinto-Santini, D. & Parkhurst, S. M. Rho1 interacts with p120ctn and α-catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 129, 3771–3782 (2002).

    CAS  Google Scholar 

  20. Li, F. & Higgs, H. N. The mouse formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    Article  CAS  Google Scholar 

  21. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol. 3, 8–14 (2001).

    Article  CAS  Google Scholar 

  22. Higgs, H. N. Formin proteins: a domain-based approach. Trends Biochem. Sci. 30, 342–353 (2005).

    Article  CAS  Google Scholar 

  23. Olson, M. F. GTPase signalling: new functions for diaphanous-related formins. Curr. Biol. 13, R360–R362 (2003).

    Article  CAS  Google Scholar 

  24. Miller, A. L., Wang, Y., Mooseker, M. S. & Koleske, A. J. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion. J. Cell Biol. 165, 407–419 (2004).

    Article  CAS  Google Scholar 

  25. Schumacher, N., Borawski, J. M., Leberfinger, C. B., Gessler, M. & Kerkhoff, E. Overlapping expression pattern of the actin organizers Spir-1 and formin-2 in the developing mouse nervous system and the adult brain. Gene Expr. Patterns 4, 249–255 (2004).

    Article  CAS  Google Scholar 

  26. Leader, B. et al. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nature Cell Biol. 4, 921–928 (2002).

    Article  CAS  Google Scholar 

  27. Ryley, D. et al. Characterization and mutation analysis of the human FORMIN-2 (FMN2) gene in women with unexplained infertility. Fertil. Steril. 83, 1363–1371 (2005).

    Article  CAS  Google Scholar 

  28. Spradling, A. C. P element-mediated transformation in: Drosophila, A Practical Approach (ed. D. B. Roberts) 175–197 (IRL Press, Oxford, 1986).

    Google Scholar 

  29. Grieder, N. C., de Cuevas, M. & Spradling, A. C. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264 (2000).

    CAS  Google Scholar 

  30. Cha, B. -J., Serbus, L. R., Koppetsch, B. S. & Theurkauf, W. E. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nature Cell Biol. 4, 592–598 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Infante, J. Nance, S. Parks, T. Phippen, J. Priess, P. Soriano and V. Vasioukhin for their advice and interest during the course of this work and for comments on the manuscript. We also thank C. Berg, L. Cooley, A. Ephrussi, B. Kaiser, A. Koleske, P. Lasko, M. Maurer, L. Manseau, H. Oda, J. Roe, S. Roth, T. Schüpbach, L. Serbus, D. St. Johnston, R. Strong, W. Theurkauf, T. Tsukiyama, J. Vazquez, V. Vigdorovich, A. Wittinghofer and the Bloomington Stock Center for advice, equipment, protocols, antibodies, DNAs, flies and other reagents used in this study. This work was supported by a National Institutes of Health grant (GM066847, to S.M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Parkhurst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and S6 (PDF 1413 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1330 kb)

Supplementary Information

Supplementary Movie 2 (MOV 618 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2173 kb)

Supplementary Information

Supplementary Movie 4 (MOV 2700 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2049 kb)

Supplementary Information

Supplementary Movie 6 (MOV 712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales-Nieves, A., Johndrow, J., Keller, L. et al. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol 8, 367–376 (2006). https://doi.org/10.1038/ncb1385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1385

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing