Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tyrosine phosphorylation controls PCNA function through protein stability

Abstract

The proliferating cell nuclear antigen (PCNA) is an essential protein for DNA replication and damage repair. How its function is controlled remains an important question. Here, we show that the chromatin-bound PCNA protein is phosphorylated on Tyr 211, which is required for maintaining its function on chromatin and is dependent on the tyrosine kinase activity of EGF receptor (EGFR) in the nucleus. Phosphorylation on Tyr 211 by EGFR stabilizes chromatin-bound PCNA protein and associated functions. Consistently, increased PCNA Tyr 211 phosphorylation coincides with pronounced cell proliferation, and is better correlated with poor survival of breast cancer patients, as well as nuclear EGFR in tumours, than is the total PCNA level. These results identify a novel nuclear mechanism linking tyrosine kinase receptor function with the regulation of the PCNA sliding clamp.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tyrosine phosphorylation of PCNA.
Figure 2: Y 211 phosphorylation is required for maintaining PCNA protein stability.
Figure 3: Nuclear EGFR associates and phosphorylates PCNA at tyrosine 211.
Figure 4: Protein stability of the chromatin-associated PCNA is controlled by Y 211 phosphorylation.
Figure 5: Tyr 211 phosphorylation of PCNA is associated with cellular and physiological proliferation.
Figure 6: Tyr 211 phosphorylation indirectly regulates the DNA repair and DNA replication functions of PCNA without changing its intrinsic activity.

Similar content being viewed by others

References

  1. Kelman, Z. & O'Donnell, M. Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res. 23, 3613–3620 (1995).

    Article  CAS  Google Scholar 

  2. Bravo, R. & Macdonald-Bravo, H. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J. Cell Biol. 105, 1549–1554 (1987).

    Article  CAS  Google Scholar 

  3. Paunesku, T. et al. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int. J. Radiat. Biol. 77, 1007–1021 (2001).

  4. Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4267–4274 (2004).

    Article  CAS  Google Scholar 

  5. Kannouche, P.L. & Lehmann, A.R. Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3, 1011–1013 (2004).

    Article  CAS  Google Scholar 

  6. Jonsson, Z.O., Podust, V.N., Podust, L.M. & Hubscher, U. Tyrosine 114 is essential for the trimeric structure and the functional activities of human proliferating cell nuclear antigen. EMBO J. 14, 5745–5751 (1995).

    Article  CAS  Google Scholar 

  7. Maga, G. & Hubscher, U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 116, 3051–3060 (2003).

    Article  CAS  Google Scholar 

  8. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  9. Lin, S.Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biol. 3, 802–808 (2001).

    Article  CAS  Google Scholar 

  10. Lo, H.-W. et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7, 575–589 (2005).

    Article  CAS  Google Scholar 

  11. Hanada, N. et al. Co-regulation of b-Myb expression by E2F1 and EGF receptor. Mol. Carcinog. 45, 10–17 (2006).

    Article  CAS  Google Scholar 

  12. Assy, N. & Minuk, G.Y. Liver regeneration: methods for monitoring and their applications. J. Hepatol. 26, 945–952 (1997).

    Article  CAS  Google Scholar 

  13. Marti, U. & Hug, M. Acinar and cellular distribution and mRNA expression of the epidermal growth factor receptor are changed during liver regeneration. J. Hepatol. 23, 318–327 (1995).

    CAS  PubMed  Google Scholar 

  14. Psyrri, A. et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin. Cancer Res. 11, 5856–5862 (2005).

    Article  CAS  Google Scholar 

  15. Marti, U. et al. Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid 11, 137–145 (2001).

    Article  CAS  Google Scholar 

  16. Tao, Y. et al. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein–Barr-encoded oncoprotein latent membrane protein 1. Exp. Cell Res. 303, 240–251 (2005).

    Article  CAS  Google Scholar 

  17. Lo, H.-W. et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 65, 338–348 (2005).

    CAS  PubMed  Google Scholar 

  18. Jeziorski, A., Blonski, J.Z. & Niewiadomska, H. The expression of products of oncogens c-erbB2 and EGFR and proliferating antigens Ki67 and PCNA in primary invasive ductal cancer of female breast. J. Exp. Clin. Cancer Res. 19, 61–67 (2000).

    CAS  PubMed  Google Scholar 

  19. Shrestha, P. et al. Proliferating cell nuclear antigen in breast lesions: correlation of c-erbB-2 oncoprotein and EGF receptor and its clinicopathological significance in breast cancer. Virchows Arch. A Pathol. Anat. Histopathol. 421, 193–202 (1992).

    Article  CAS  Google Scholar 

  20. Frassoldati, A. et al. Changes of biological features in breast cancer cells determined by primary chemotherapy. Breast Cancer Res. Treat. 44, 185–192 (1997).

    Article  CAS  Google Scholar 

  21. Hoege, C., Pfander, B., Moldovan, G.-L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  Google Scholar 

  22. Stelter, P. & Ulrich, H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    Article  CAS  Google Scholar 

  23. Ulrich, H.D. How to activate a damage-tolerant polymerase: consequences of PCNA modifications by ubiquitin and SUMO. Cell Cycle 3, 15–18 (2004).

    Article  CAS  Google Scholar 

  24. Kiyokawa, N., Lee, E.K., Karunagaran, D., Lin, S.-Y. & Hung, M.-C. Mitosis-specific negative regulation of epidermal growth factor receptor, triggered by a decrease in ligand binding and dimerization, can be overcome by overexpression of receptor. J. Biol. Chem. 272, 18656–18665 (1997).

    Article  CAS  Google Scholar 

  25. Ammosova, T. et al. Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein. J. Biol. Chem. 280, 36364–36371 (2005).

    Article  CAS  Google Scholar 

  26. Hasan, S., Hassa, P.O., Imhof, R. & Hottiger, M.O. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410, 387–391 (2001).

    Article  CAS  Google Scholar 

  27. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).

    Article  CAS  Google Scholar 

  28. Kato, T. et al. New prognostic factors associated with long-term survival in node-negative breast cancer patients. Breast Cancer 6, 370–377 (1999).

    Article  CAS  Google Scholar 

  29. Kato, T., Kameoka, S., Kimura, T., Nishikawa, T. & Kobayashi, M. The combination of angiogenesis and blood vessel invasion as a prognostic indicator in primary breast cancer. Br. J. Cancer 88, 1900–1908 (2003).

    Article  CAS  Google Scholar 

  30. Lee, J.S. et al. Correlation between angiogenesis, apoptosis and cell proliferation in invasive ductal carcinoma of the breast and their relation to tumor behavior. Anal. Quant. Cytol. Histol. 23, 161–168 (2001).

    CAS  PubMed  Google Scholar 

  31. Bukholm, I.R.K., Bukholm, G., Holm, R. & Nesland, J.M. Association between histology grade, expression of HsMCM2, and cyclin A in human invasive breast carcinomas. J. Clin. Pathol. 56, 368–373 (2003).

    Article  CAS  Google Scholar 

  32. Grossi, F. et al. Prognostic significance of K-ras, p53, bcl-2, PCNA, CD34 in radically resected non-small cell lung cancers. Eur. J. Cancer 39, 1242–1250 (2003).

    Article  CAS  Google Scholar 

  33. Heimann, R., Ferguson, D., Recant, W.M. & Hellman, S. Breast cancer metastatic phenotype as predicted by histologic tumor markers. Cancer J. Sci. Am. 3, 224–249 (1997).

    CAS  PubMed  Google Scholar 

  34. Arteaga, C.L. Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Semin. Oncol. 29, 3–9 (2002).

    Article  CAS  Google Scholar 

  35. Baselga, J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7, 2–8 (2002).

    Article  CAS  Google Scholar 

  36. Wang, S.-C. et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6, 251–261 (2004).

    Article  CAS  Google Scholar 

  37. Xie, Y.M. & Hung, M.C. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem. Biophys. Res. Commun. 203, 1589–1598 (1994).

    Article  CAS  Google Scholar 

  38. Offterdinger, M., Schofer, C., Weipoltshammer, K. & Grunt, T.W. c-erbB-3: a nuclear protein in mammary epithelial cells. J. Cell Biol. 157, 929–940 (2002).

    Article  CAS  Google Scholar 

  39. Ni, C.-Y., Murphy, M.P., Golde, T.E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    Article  CAS  Google Scholar 

  40. Lo, H.W. & Hung, M.C. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer 94, 184–188 (2006).

    Article  CAS  Google Scholar 

  41. Massie, C. & Mills, I.G. The developing role of receptors and adaptors. Nature Rev. Cancer 6, 403–409 (2006).

    Article  CAS  Google Scholar 

  42. Carpenter, G. Nuclear localization and possible functions of receptor tyrosine kinases. Curr. Opin. Cell Biol. 15, 143–148 (2003).

    Article  CAS  Google Scholar 

  43. Wells, A. & Marti, U. Signalling shortcut: cell-surface receptors in the nucleus? Nature Rev. Mol. Cell Biol. 3, 697–702 (2002).

    Article  CAS  Google Scholar 

  44. Lo, H.W. et al. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1. J. Cell Biochem. 98, 1570–1583 (2006).

    Article  CAS  Google Scholar 

  45. Giri, D.K. et al. Endosomal transport of ErbB-2: a mechanism for nuclear entry of cell surface receptor. Mol. Cell. Biol. 25, 11005–11018 (2005).

    Article  CAS  Google Scholar 

  46. Williams, C.C. et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J. Cell Biol. 167, 469–478 (2004).

    Article  CAS  Google Scholar 

  47. Huang, T.T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 341–347 (2006).

    Article  Google Scholar 

  48. Asada, M. et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J. 18, 1223–1234 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The anti-phospho-Tyr 211 antibody was generated by Bethyl Laboratories, Inc. as a collaboration. We also thank S. Dent, M. Van Dyke and D. Yu for helpful discussions and comments. This study was supported, in part, by the NIH RO1 109311 and NIH PO1 099031 grants, the National Breast Cancer Foundation, Inc. (to M.-C. H.), and the Cancer Center support grant CA16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mien-Chie Hung.

Ethics declarations

Competing interests

E.W.M is currently an employee of Bethyl Laboratories, Inc. (Montgomery, TX), which has a commerical interest in the antibodies against PCNA and phospho-PCNA. E.W.M. collaborated with the Hung group to develop these antibodies.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SC., Nakajima, Y., Yu, YL. et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 8, 1359–1368 (2006). https://doi.org/10.1038/ncb1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing