Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin

A Corrigendum to this article was published on 01 April 2006

Abstract

Amyloid beta peptide (Aβ) has a key role in the pathological process of Alzheimer's disease (AD), but the physiological function of Aβ and of the amyloid precursor protein (APP) is unknown1,2. Recently, it was shown that APP processing is sensitive to cholesterol and other lipids3,4,5,6,7,8,9,10. Hydroxymethylglutaryl-CoA reductase (HMGR) and sphingomyelinases (SMases) are the main enzymes that regulate cholesterol biosynthesis and sphingomyelin (SM) levels, respectively. We show that control of cholesterol and SM metabolism involves APP processing. Aβ42 directly activates neutral SMase and downregulates SM levels, whereas Aβ40 reduces cholesterol de novo synthesis by inhibition of HMGR activity. This process strictly depends on γ-secretase activity. In line with altered Aβ40/42 generation, pathological presenilin mutations result in increased cholesterol and decreased SM levels. Our results demonstrate a biological function for APP processing and also a functional basis for the link that has been observed between lipids and Alzheimer's disease (AD).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Presenilin in lipid homeostasis.
Figure 2: Aβ and APP function in lipid homeostasis.
Figure 3: Effects of PS-FAD mutations on cellular cholesterol, SM 18:0 levels and nSMase activity.
Figure 4: Model of γ-secretase activity in lipid homeostasis.

Similar content being viewed by others

References

  1. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  2. Sisodia, S. S. & St George-Hyslop, P. H. γ-Secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nature Rev. Neurosci. 3, 281–290 (2002).

    Article  CAS  Google Scholar 

  3. Wahrle, S. et al. Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9, 11–23 (2002).

    Article  CAS  Google Scholar 

  4. Burns, M. et al. Presenilin redistribution associated with aberrant cholesterol transport enhances β-amyloid production in vivo. J. Neurosci. 23, 5645–5649 (2003).

    Article  CAS  Google Scholar 

  5. Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer's disease: the cholesterol connection. Nature Neurosci. 6, 345–351 (2003).

    Article  CAS  Google Scholar 

  6. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001).

    Article  CAS  Google Scholar 

  7. Runz, H. et al. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci. 22, 1679–1689 (2002).

    Article  CAS  Google Scholar 

  8. Yamazaki, T., Chang, T. Y., Haass, C. & Ihara, Y. Accumulation and aggregation of amyloid β-protein in late endosomes of Niemann-pick type C cells. J. Biol. Chem. 276, 4454–4460 (2001).

    Article  CAS  Google Scholar 

  9. Sawamura, N. et al. Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J. Biol. Chem. 279, 11984–11991 (2004).

    Article  CAS  Google Scholar 

  10. Refolo, L. M. et al. A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 8, 890–899 (2001).

    Article  CAS  Google Scholar 

  11. Herreman, A. et al. Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol. 2, 461–462 (2000).

    Article  CAS  Google Scholar 

  12. Grziwa, B. et al. The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted. J. Biol. Chem. 278, 6803–6808 (2003).

    Article  CAS  Google Scholar 

  13. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  Google Scholar 

  14. Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998).

    Article  CAS  Google Scholar 

  15. Abad-Rodriguez, J. et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167, 953–960 (2004).

    Article  CAS  Google Scholar 

  16. Simons, M. et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52, 346–350 (2002).

    Article  CAS  Google Scholar 

  17. Shoji, M. et al. The levels of cerebrospinal fluid Aβ40 and Aβ42(43) are regulated age-dependently. Neurobiol. Aging 22, 209–215 (2001).

    Article  CAS  Google Scholar 

  18. Cutler, R. G. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 2070–2075 (2004).

    Article  CAS  Google Scholar 

  19. Pappolla, M. A. et al. Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 61, 199–205 (2003).

    Article  CAS  Google Scholar 

  20. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G. & Siegel, G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3- methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57, 1439–1443 (2000).

    Article  CAS  Google Scholar 

  21. Sparks, D. L. et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch. Neurol. 62, 753–757 (2005).

    Article  Google Scholar 

  22. Saura, C. A. et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36 (2004).

    Article  CAS  Google Scholar 

  23. Beglopoulos, V. et al. Reduced β-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J. Biol. Chem. 279, 46907–46914 (2004).

    Article  CAS  Google Scholar 

  24. Ida, N. et al. Analysis of heterogeneous βA4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J. Biol. Chem. 271, 22908–22914 (1996).

    Article  CAS  Google Scholar 

  25. Lee, M. K. et al. Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J. Neurosci. 16, 7513–7525 (1996).

    Article  CAS  Google Scholar 

  26. Slunt, H. H. et al. Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP). J. Biol. Chem. 269, 2637–2644 (1994).

    CAS  PubMed  Google Scholar 

  27. Jana, A. & Pahan, K. Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase: implications for Alzheimer's disease. J. Biol. Chem. 279, 51451–51459 (2004).

    Article  CAS  Google Scholar 

  28. Qi, X. L. et al. Oxidative stress induced by β-amyloid peptide (1–42) is involved in the altered composition of cellular membrane lipids and the decreased expression of nicotinic receptors in human SH-SY5Y neuroblastoma cells. Neurochem. Int. 46, 613–621 (2005).

    Article  CAS  Google Scholar 

  29. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  Google Scholar 

  30. Huitema, K., van den Dikkenberg, J., Brouwers, J. F. & Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Tomic and R. Stammann for excellent technical assistance; B. Penke for peptides; T. Ruppert for mass-spectrometry advice and support; and for funding received from the European Union via QLK-172-2002 Lipidiet, Deutsche Forschungsgemeinschaft and Bundesministerium für Bildung und Forschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hartmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 ,S4 and Supplementary Materials and Methods plus Supplementary References (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, M., Grimm, H., Pätzold, A. et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 7, 1118–1123 (2005). https://doi.org/10.1038/ncb1313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing