Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cellular sources of new pancreatic β cells and therapeutic implications for regenerative medicine

Abstract

Replacing missing insulin-producing β cells to treat diabetes is a major challenge for regenerative medicine. A better understanding of β-cell embryogenesis and regeneration in adult life is needed to devise means to derive these specialized cells in sufficiently large numbers from stem or precursor cells. It is also critical to ensure that any surrogate or regenerated β cells have perfectly regulated insulin production, which is essential for physiological glucose homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insulin production from organ to molecule.
Figure 2: The three-dimensional architecture of an islet.

Similar content being viewed by others

References

  1. Knight, J. Biologists fear cloning hype will undermine stem-cell research. Nature 430, 817 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Donath, M. Y. & Halban, P. A. Decreased β-cell mass in diabetes: Significance, mechanisms and therapeutic implications. Diabetologia 47, 581–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Edlund, H. Organogenesis: Pancreatic organogenesis developmental mechanisms and implications for therapy. Nature Rev. Genet. 3, 524–532 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Murtaugh, L. C. & Melton, D. A. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol. 19, 71–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Stoffel, M., Vallier, L. & Pedersen, R. A. Navigating the pathway from embryonic stem cells to β cells. Semin. Cell Dev. Biol. 15, 327–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Colman, A. Making new β cells from stem cells. Semin. Cell Dev. Biol. 15, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Leon-Quinto, T., Jones, J., Skoudy, A., Burcin, M. & Soria, B. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47, 1442–1451 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Hellerstrom, C., Andersson, A. & Gunnarsson, R. Regeneration of islet cells. Acta Endocrinol. Suppl. (Copenh.) 205, 145–160 (1976).

    CAS  Google Scholar 

  9. Bonner-Weir, S. Perspective: Postnatal pancreatic β cell growth. Endocrinology 141, 1926–1929 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Butler, A. E. et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bonner-Weir, S. Life and death of the pancreatic β cells. Trends Endocrinol. Metab. 11, 375–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Bonner-Weir, S. & Sharma, A. Pancreatic stem cells. J. Pathol. 197, 519–526 (2002).

    Article  PubMed  Google Scholar 

  13. Ianus, A., Holz, G. G., Theise, N. D. & Hussain, M. A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kojima, H. et al. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl Acad. Sci. USA 101, 2458–2463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lechner, A. et al. No evidence for significant transdifferentiation of bone marrow into pancreatic β-cells in vivo. Diabetes 53, 616–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hess, D. et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nature Biotechnol. 21, 763–770 (2003).

    Article  CAS  Google Scholar 

  17. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  Google Scholar 

  19. Bouwens, L. & Pipeleers, D. G. Extra-insular β cells associated with ductules are frequent in adult human pancreas. Diabetologia 41, 629–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, R. et al. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52, 2007–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Heremans, Y. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol. 159, 303–312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Med. 6, 568–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Zalzman, M. et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl Acad. Sci. USA 100, 7253–7258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kahn, S. E. Engineering a new β-cell: A critical venture requiring special attention to constantly changing physiological needs. Semin. Cell Dev. Biol. 15, 359–370 (2004).

    Article  PubMed  Google Scholar 

  26. Halban, P. A., Kahn, S. E., Lernmark, A. & Rhodes, C. J. Gene and cell-replacement therapy in the treatment of type 1 diabetes: How high must the standards be set? Diabetes 50, 2181–2191 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Orci, L. Macro and micro-domains in the endocrine pancreas. Diabetes 31, 538–565 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Weir, G. C. Can we make surrogate β-cells better than the original? Semin. Cell Dev. Biol. 15, 347–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Howell, S. L. The mechanism of insulin secretion. Diabetologia 26, 319–327 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.A.H. is supported by the Juvenile Diabetes Research Foundation, the National Institutes of Health and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halban, P. Cellular sources of new pancreatic β cells and therapeutic implications for regenerative medicine. Nat Cell Biol 6, 1021–1025 (2004). https://doi.org/10.1038/ncb1104-1021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1104-1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing